收藏 分享(赏)

(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt

上传人:a**** 文档编号:494709 上传时间:2025-12-09 格式:PPT 页数:16 大小:301.50KB
下载 相关 举报
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第1页
第1页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第2页
第2页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第3页
第3页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第4页
第4页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第5页
第5页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第6页
第6页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第7页
第7页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第8页
第8页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第9页
第9页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第10页
第10页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第11页
第11页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第12页
第12页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第13页
第13页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第14页
第14页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第15页
第15页 / 共16页
(人教广西专版)2018年秋八年级上学期数学习题课件:12.2.4三角形全等的判定 (共16张PPT).ppt_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第十二章 全等 三角形12.2 三角形全等的判定12.2.4 直角三角形全等的判定(HL)123456781如图,BD90,BCCD,130,则2的度数为()A30 B60C30和60之间 D以上都不对返回B2(深圳月考)如图,ABAC于A,BDCD于D,若ACDB,则下列结论中不正确的是()AAD BABCDCBCOBOD DOAOD返回C3要判定两个直角三角形全等,下列说法正确的有()有两条直角边对应相等;有两个锐角对应相等;有斜边和一条直角边对应相等;有一条直角边和一个锐角相等;有斜边和一个锐角对应相等;有两条边相等A6个 B5个 C4个 D3个返回D4如图,已知点C、E在BF上,AD9

2、0,BECF,ABDF.求证:BF.返回证明:BEFC,BECEFCCE,即BCFE,AD90,在RtABC和RtDFE中,RtABCRtDFE(HL),BF.5如图,E、F分别为线段AC上的两个点,且DEAC于点E,BFAC于点F,若ABCD,AECF,BD交AC于点M.(1)图中有多少对全等三角形,并把它们写出来;解:(1)3对,ABFCDE,ABMCDM,BMFDME.(2)试猜想DE与BF的关系,并证明你的结论BFDE,DEBF,证明:DEAC,BFAC,DECBFA90.DEBF,AECF,AEEFCFEF,即AFCE.在RtABF和RtCDE中,RtABFRtCDE(HL),BFD

3、E.返回6如图,已知AD为ABC的高,E为AC上一点,BE交AD于F,且有BFAC,FDCD.(1)求证:RtACDRtBFD;(1)证明:ADBC,ADBADC90.又ACBF,CDFD,RtACDRtBFD(HL)(2)BE与AC有怎样的位置关系?请说明理由(2)解:BEAC.理由如下:ADCBDF,EBCDAC.又DACACD90,EBCACD90.BEAC.返回7如图,在ABC中,ABBC,ABC90,F为AB延长线上一点,点E在BC上,且AECF.(1)求证:RtABERtCBF;(1)证明:ABC90,CBFABE90,在RtABE和RtCBF中,RtABERtCBF(HL)(2)

4、解:ABC90,ABBC,BACACB45,又CAE30,BAECABCAE453015,由(1)知:RtABERtCBF,BCFBAE15,ACFBCFACB154560.返回(2)若CAE30,求ACF的度数8如图,在ABC中,ACB90,ACBC,过点 C在 ABC外 作 直 线 MN,AMMN于 点 M,BNMN于点N.(1)求证:MNAMBN;(1)证明:AMMN,BNMN,AMCCNB90,MACACM90,ACB90,NCBACM90,MACNCB,在AMC和CNB中,AMCCNB(AAS),AMCN,MCNB,MNNCCM,MNAMBN;(2)如 图,若 过 点 C作 直 线 MN与 线 段 AB相 交,AMMN于点M,BNMN于点N(AMBN),(1)中的结论是否仍然成立?说明理由(2)解:(1)中的结论不成立理由如下:AMMN,BNMN,AMCCNB90,MACACM90,ACB90,NCBACM90,MACNCB,在AMC和CNB中,AMCCNB(AAS),AMCN,MCNB,MNCNCM,MNAMBN.返回

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1