1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,A
2、M=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能2、在中,AB,CD为两条弦,下列说法:若,则;若,则;若,则弧AB=2弧CD;若,则.其中正确的有()A1个B2个C3个D4个3、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()AB2C1+D14、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)两条对角线长分别为6和8的菱形的周长是40ABCD15、在同一直角坐标系中,一次函数ykx+1与二次函数
3、yx2+k的大致图象可以是()ABCD二、多选题(5小题,每小题4分,共计20分)1、在图所示的4个图案中不包含图形的旋转的是()ABCD2、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x21012tm22n已知则下列结论中,正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 AB和是方程的两个根CD(s取任意实数)3、下列方程一定不是一元二次方程的是()ABCD4、下列命题中不正确的命题有()A方程kx2-x-2=0是一元二次方程Bx=1与方程x2=1是同解方程C方程x2=x与方程x=1是同解方程D由(x+1)(x-1)=3可得x+1=3或x-1=35、以图
4、(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,是等边三角形,点D为BC边上一点,以点D为顶点作正方形DEFG,且,连接AE,AG若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为_2、已知二次函数yx2bxc的顶点在x轴上,点A(m1,n)和点B(m3,n)均在二次函数图象上,求n的值为_3、如图,在甲,以点为圆心,的长为半径作圆,交于点,交于点,
5、阴影部分的面积为_(结果保留)4、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_5、关于的方程,k=_时,方程有实数根 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由2、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足yx42(x168)若宾馆每天的日常运营成本为4000元,
6、有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?3、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?4、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果
7、售价超过80元后,若再涨价,则每涨1元每月少卖3件设每件商品的售价x元(x为整数),每个月的销售量为y件(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式5、解下列方程:(1);(2)-参考答案-一、单选题1、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 2、A【解析】【分析】根据圆心角、弧、弦之间的关系解答即可.【详解】若,则,正确; 线 封 密 内 号学级年名姓 线 封 密 外 若,则,故不正确;由不能得到弧AB=2弧CD,故不正确;若,则,错误.故选A.【考
8、点】本题考查了圆心角、弧、弦之间的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.也考查了等腰三角形的性质.3、B【解析】【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-SABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-SABO= 故选:B【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.4、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】(1)无理数都是无限小数,是真命题,(2)因式分解,是真命
9、题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)菱形的对角线长为6和8根据菱形的性质,对角线互相垂直且平分,利用勾股定理可求得菱形的边长为5,则菱形的周长为,是假命题则随机抽取一个是真命题的概率是,故选:C【考点】本题考查了命题的真假,概率,菱形的性质,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.5、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意; 线 封 密 内
10、 号学级年名姓 线 封 密 外 二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键二、多选题1、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC【考
11、点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合是解题的关键2、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,结合二次函数图象性质,逐一分析各个选项,即可作出相应的判断【详解】解:由表格数据可知,当时,将点代入中,可得由表格数据可知,当时,;当时,;即抛物线对称轴为:,抛物线对称轴为:,化简得,抛物线解析式化为,将点代入中,化简得,解得 线 封 密 内 号学级年名姓 线 封 密 外 ,故A选项说法错误,不符合题意;二
12、次函数对称轴为,和时,对应的函数值相等,时,对应函数值为,和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,故,C选项说法正确,符合题意;,即,s取任意实数,故D选项说法错误,不符合题意;故选:BC【考点】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键3、AB【解析】【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可【详解】解:A、分母含有未知数,一定不是一元二次方程,故本选项符合题意;B、含有两个未知数,一定不是一元二次
13、方程,故本选项符合题意;C、当a=0 时,不是一元二次方程,当a0时,是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项不符合题意故选:AB【考点】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键4、ABCD【解析】【分析】根据方程、方程的解的有关定义以及解方程等知识点逐项判断即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A.方程kx2x2=0当k0时才是一元二次方程,故错误;B.x=1与方程x2=1不是同解方程,故错误;C.方程x2=x与方程x=1不是同解方程,故错误;D.由(x+1)(x1
14、)=3可得x=2,故错误故选:ABCD【考点】本题主要考查了一元二次方程的定义、解一元二次方程、同解方程等知识点,掌握解一元二次方程的方法是解答本题的关键5、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2)故选BCD【考点】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律三、填空题1、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,
15、得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出【详解】过点A作于M,是等边三角形,在中,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中, 线 封 密 内 号学级年名姓 线 封 密 外 在中,;故答案为8【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键2、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b2(m+1),c(m+1)2,即可得出yx22(
16、m+1)x+(m+1)2,把A的坐标代入即可求得n的值【详解】解:点A(m1,n)和点B(m+3,n)均在二次函数yx2+bx+c图象上,b2(m+1),二次函数yx2+bx+c的顶点在x轴上,b24c0,2(m+1)24c0,c(m+1)2,yx22(m+1)x+(m+1)2,把A的坐标代入得,n(m1)22(m+1)(m1)+(m+1)24,故答案为:4【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键3、【解析】【分析】连接BE,根据正切的定义求出A,根据扇形面积公式、三角形的面积公式计算即可【详解】解:连接BE, 在RtABC中,ABC90,tanA,A
17、60,BABE,ABE为等边三角形,ABE30,EBC30,阴影部分的面积22 线 封 密 内 号学级年名姓 线 封 密 外 故答案为【考点】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键4、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出COB=60,再在COH中求出CH,最后由垂径定理求出CD【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,A=EOB,D=COE,A+D=30,EOB+COE=COB=30,COB=60,CDAB,COH为30,60,90的三角形,其三边之比为,CH=,CD=2CH=9,
18、故答案为:9【考点】本题考查了圆周角定理及垂径定理等相关知识点,本题的关键是求出COB=605、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根, 线 封 密 内 号学级年名姓 线 封 密 外 ,即,解得:,且;综上所述,当时,方程有实数根,故答案为:【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键四、解答题1、(1);理由见解析;(2)与的数
19、量及位置关系都不变;答案见解析【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1),由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点,四边形为平行四边形, 线 封 密 内 号学级年名姓 线 封 密 外 ,又,即【考点】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质2、(1)zx+122(x168);(2)应将房间定价确定为260元时,获得利润最大,最大利润为8767元【解析】【分析】(1)入住房间z
20、(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由题意得w关于x的二次函数关系式,根据二次函数的对称性及问题实际可得答案【详解】解:(1)由题意得:z80(x42)x+122,入住房间z(间)与定价x(元/间)之间关系式为zx+122(x168);(2)设利润为w元,由题意得:w(x+122)x36(x+122)4000x2+131x8392,当x262时,w最大,此时z56.5非整数,不合题意,x260或264时,w最大,让客人得到实惠,x260,w最大2602+13126083928767,应将房间定价确定为260元时,获得利润最大,最大利润为8767元【考点】本题
21、考查了二次函数在实际问题中的应用,理清题中的数量关系、熟练掌握二次函数的性质是解题的关键3、(1);(2)不亏本,见解析【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关于的一元二次方程,求解即可得出结论; 线 封 密 内 号学级年名姓 线 封 密 外 (2)根据经过连续三次降价后的价格=经过连续两次降价后的价格(1-20%),即可求出再次降价后的价格,将其与100元进行比较后即可得出结论【详解】(1)解:设每次下降的百分率为, 依题意,得: ,解得:(不合题意,舍去)答:这种药品每次降价的百分率是20%;(2)128(1-20%)=102.
22、4,102.4100,按此降价幅度再一次降价,药厂不会亏本【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键4、(1);(2)【解析】【分析】(1)根据题意先分类讨论,当售价超过50元但不超过80元时,上涨的价格是元,就少卖件,用原来的210件去减得到销售量;当售价超过80元,超过80的部分是元,就少卖件,用原来的210件先减去售价从50涨到80之间少卖的30件再减去得到最终的销售量(2)根据利润=(售价-成本)销量,现在的单件利润是元,再去乘以(1)中两种情况下的销售量,得到销售利润关于售价的式子【详解】(1)当时,即当时,即,则(2)由利润=(售价-成本)
23、销售量可以列出函数关系式为【考点】本题考查二次函数实际应用中的利润问题,关键在于根据题意列出销量与售价之间的一次函数关系式以及熟悉求利润的公式,需要注意本题要根据售价的不同范围进行分类讨论,结果要写成分段函数的形式,还要标上的取值范围5、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,; 线 封 密 内 号学级年名姓 线 封 密 外 (2)【考点】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键