1、京改版八年级数学上册期末模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若
2、添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE2、如图,与相交于点O,不添加辅助线,判定的依据是()ABCD3、化简的结果是()ABCD4、分式化简后的结果为()ABCD5、在四个实数,0,中,最小的实数是()AB0CD二、多选题(5小题,每小题4分,共计20分)1、将一个等腰直角三角形按图示方式依次翻折,若DE1,则下列说法正确的有()ADF平分BDEBBC长为CB FD是等腰三角形DCED的周长等于BC的长2、下列根式中,能再化简的二次根式是()ABCD3、如图,在ABC中,AB=AC,BAD=CAD,则下列
3、结论,正确的有()AABDACDBB=CCBD=CDDADBC4、下列式子是分式的有()ABCD5、下列分式变形不正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知,则的值是_2、已知为实数,规定运算:,按上述方法计算:当时,的值等于_3、如图,若ABCADE,且135,则2_4、如图,E为ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,B46,C30,EFC70,则D_5、若一个偶数的立方根比2大,平方根比4小,则这个数是_.四、解答题(5小题,每小题8分,共计40分)1、如图,由ABC中,按如图所示方式折叠,使点B、C重合,折痕为
4、DE,求出AE和AD的长, 2、在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化比如:(1);(2)试试看,将下列各式进行化简:(1);(2);(3)3、观察下列等式,探究其中的规律:+1,+,+,+,(1)按以上规律写出第个等式:_;(2)猜想并写出第n个等式:_;(3)请证明猜想的正确性4、求下列各式中的x(1)x257;(2)(x+1)36405、如图,在和中,(1)当点D在AC上时,如图,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图中的绕点A顺时针旋转,如图,线段BD,CE有怎样的数量关系和
5、位置关系?请说明理由(3)拓展应用:已知等边和等边如图所示,求线段BD的延长线和线段CE所夹锐角的度数-参考答案-一、单选题1、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)
6、D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键2、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键3、D【解析】【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【考点】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母4、B【解析】【分析】根据异分母分式相加减的运算法则计算即可异分母分式相加减,先通分,再根据同分母分式相加减的法则计算【详解】
7、解:故选:B【考点】本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键5、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小二、多选题1、BCD【解析】【分析】由和等腰直角三角形,可推出,进一步由角度关系得到,结合,可得到,即可判断出A、C是否正确;通过分析可以得到,从而在中,得到长度,进一步求得的周长和BC的长度,即可判断B、D是否正确【详解】解:是等腰直角三角形,且 折叠 ,折叠 , 不是的角平分线,选项A错
8、误 是等腰三角形,选项C正确 又 的周长等于的长,所以选项B、D正确故选:BCD【考点】本题考查等腰三角形的性质,直角三角形互余,三角形外角性质以及三角形全等性质等知识点,根据知识点解题是关键2、BCD【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】解:A、该二次根式符合最简二次根式的定义,故本选项不符合题意;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项符合题意;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项符合题意;D、该二次根式
9、的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项符合题意;故选BCD【考点】本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式3、ABCD【解析】【分析】由于,利用等边对等角,等腰三角形三线合一定理,可知,从而【详解】在中,故选ABCD【考点】本题考查了等腰三角形的性质、三角形全等的判定,等腰三角形的角平分线,底边上的中线,底边的高相互重合4、CD【解析】【分析】根据分式定义:如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子叫做分式,其中A称为分子,B称为分母,据此判
10、断即可【详解】解:A、分母中没有字母,不是分式,不符合题意;B、分母中没有字母,不是分式,不符合题意;C、,是分式,符合题意;D、,是分式,符合题意;故选:CD【考点】本题考查了分式的定义,熟知分式的概念是解本题的关键5、ABD【解析】【分析】根据分式的基本性质以及分式有意义的条件进行判断即可【详解】解:A 、,当时,等式右边无意义,变形不正确,符合题意;B、,当时,等式右边无意义,变形不正确,符合题意;C、,变形正确,不符合题意;D、,变形错误,符合题意;故答案为:ABD【考点】本题考查了分式的基本性质以及分式有意义的条件,熟知分式的基本性质是解本题的关键三、填空题1、【解析】【分析】由条件
11、,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键2、【解析】【分析】将,代入进行计算,可知数列3个为一次循环,按此规律即可进行求解【详解】解:由题意可知,时,其规律是3个为一次循环,20223=674,故答案为:【考点】本题考查了实数的运算,规律型:数字变化类,把代入进行计算,找到规律是解题的关键3、35【解析】【分析】根据全等的性质可得:EADCAB,再根据等式的基本性质可得1235.【详解】解:ABCADE,EADCAB,EADCADCABCAD,2135故答案为
12、35【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.4、34#34度【解析】【分析】根据题意先求DAC,再依据ADF三角形内角和180可得答案【详解】解:B=46,C=30,DAC=B+C=76,EFC=70,AFD=70,D=180-DAC-AFD=34,故答案为:34【考点】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理5、10,12,14【解析】【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题【详解】解:2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14故
13、答案为10,12,14【考点】本题考查立方根的定义和性质,注意本题答案不唯一求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同四、解答题1、 ;【解析】【分析】在中由于,所以根据勾股定理可求出的长,由折叠可知,ED垂直平分BC,E为BC中点,BDCD,根据直角三角形斜边上的中线等于斜边的一半可求出AE的长,设BDCDx,则AD12x在中,由 即可求出x的值,故可得出结论【详解】解:在中由于,由勾股定理得:, BC12,由折叠可知,ED垂直平分BC,E为BC中点,BDCD,AEBC(直角三角形斜边上
14、的中线等于斜边的一半)设BDCDx,则AD12x在中,即92(12x)2x2,解得,【考点】本题考查的是图形折叠的性质,熟知图形折叠不变性的性质及勾股定理是解答此题的关键2、(1);(2);(3)2【解析】【分析】(1)根据第一个例子可以解答本题;(2)根据第二个例子和平方差公式可以解答本题;(3)根据第二个例子和平方差公式把原式化简,找出式子的规律得出结果即可【详解】解:(1);(2);(3),312【考点】本题考查了二次根式的混合运算、分母有理化和平方差公式,解答本题的关键是明确分母有理化的方法3、(1)+;(2)+;(3)证明见解析【解析】【分析】(1)仔细观察四个等式,可以发现第一个数
15、的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,据此进一步整理即可得出答案;(2)根据(1)中的规律直接进行归纳总结即可;(3)利用分式的运算法则进行计算验证即可.【详解】(1)观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,第个等式为:+,故答案为:+;(2)根据(1)中规律总结归纳可得:+,故答案为:+;(3)证明:对等式左边进行运算可得:+=,等式右边,左边右边,+成立【考点】本题主要考查了分式运算中数字的变化规律,根据题意正确找出相应的规律是解题关键.4、(1),;(2)【解析】【分析】(1)移项整理后,
16、利用平方根的性质开方求解,并化简即可;(2)移项整理后,利用立方根的性质开方求解即可【详解】解:(1),;(2),【考点】本题考查解利用平方根和立方根的性质解方程,掌握平方根与立方根的基本性质,熟练利用整体思想是解题关键5、 (1),见解析;(2),见解析;(3)【解析】【分析】(1)延长BD交CE于F,易证EACDAB,可得BD=CE,ABD=ACE,根据AEC+ACE=90,可得ABD+AEC=90,即可解题;(2)延长BD交CE于F,易证BAD=EAC,即可证明EACDAB,可得BD=CE,ABD=ACE,根据ABC+ACB=90,可以求得CBF+BCF=90,即可解题(3)直线BD与直
17、线EC的夹角为60如图中,延长BD交EC于F证明,可得结论(1)延长BD交CE于F,在EAC和DAB中,BDCE,ABDACE,AECACE90,ABDAEC90,BFE90,即ECBD;(2)延长BD交CE于F,BADCAD90,CADEAC90,BADEAC,在EAC和DAB中,BDCE,ABDACEABCACB90,CBFBCFABCABDACBACE90,BFC90,即ECBD(3)延长BD交CE于F,BADCAD60,CADEAC60,BADEAC,在EAC和DAB中,BDCE,ABDACEABCACB120,CBFBCFABCABDACBACE120,BFC60【考点】本题考查了等腰直角三角形的性质、全等三角形的判定和性质、等边三角形的性质等知识,本题中求证EACDAB是解题的关键