收藏 分享(赏)

数学:3.3.1基本不等式教案 (北师大必修5).doc

上传人:a**** 文档编号:540844 上传时间:2025-12-10 格式:DOC 页数:3 大小:157KB
下载 相关 举报
数学:3.3.1基本不等式教案 (北师大必修5).doc_第1页
第1页 / 共3页
数学:3.3.1基本不等式教案 (北师大必修5).doc_第2页
第2页 / 共3页
数学:3.3.1基本不等式教案 (北师大必修5).doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.3.1基本不等式授课类型:新授课【教学目标】1知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“”取等号的条件是:当且仅当这两个数相等;2过程与方法:通过实例探究抽象基本不等式;3情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程;【教学难点】基本不等式等号成立条件【教学过程】1.课题导入基本不等式的几何背景:(课本105页阅读材料)如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国

2、人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系。2.讲授新课1探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD中有4个全等的直角三角形。设直角三角形的两条直角边长为x、y,那么正方形的边长为。这样,4个直角三角形的面积的和是2xy,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。当直角三角形变为等腰直角三角形,即x=y时,正方形EFGH缩为一个点,这时有。2得到结论:一般的,如果3思考证明:你能给出它的证明吗?证明:因为 当所以,即 :41) 从几何图形的面积关系认识基本不等式特别的

3、,如果我们分别用代替x、y ,可得,通常我们把上式写作:2)从不等式的性质推导基本不等式用分析法证明:要证 (1)只要证 a+b (2)要证(2),只要证 a+b- 0 (3)要证(3),只要证 ( - ) (4)显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。 3)理解基本不等式的几何意义探究:课本第100页的“探究” 因此:基本不等式几何意义是“半径不小于半弦”评述:1.如果把看作是正数a、b的等差中项,看作是正数a、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2.在数学中,我们称为a、b的算术平均数,称为a、b的几何平均数.本节定理还可叙述为

4、:两个正数的算术平均数不小于它们的几何平均数.例1、见课本100页例1.思考交流:见课本101页。补充例题例2 已知x、y都是正数,求证:(1)2; (2)(xy)(x2y2)(x3y3)x3y3.分析:在运用定理:时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.解:x,y都是正数 0,0,x20,y20,x30,y30(1)2即2.(2)xy20 x2y220 x3y320(xy)(x2y2)(x3y3)222x3y3即:(xy)(x2y2)(x3y3)x3y3.3.随堂练习 课本102页练习4.课时小结本节课,我们学习了重要不等式a2b22ab;两正数a、b的算术平均数(),几何平均数()及它们的关系().它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab,ab()2.5.评价设计课本第107页习题3-3 B组的第1题。【板书设计】【教后记】

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1