1、数学公式:因式分解的方法要想能在综合性较强的几何题目中能灵活应用,就必须要熟记啦。因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。小编为大家整理了数学公式:因式分解的方法,方便大家查阅学习。一、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元.【例】在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则原式=(y+1)(y+2)-12=y2+3y+2-12=y2+3y-10=(y+5)(y-2)=(x2+x+5)(x2+x-2)=(x2
2、+x+5)(x+2)(x-1).二、运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。 平方差公式:a²-b²=(a+b)(a-b); 完全平方公式:a²±2ab+b²=(a±b) ²注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a3+b3=(a+b)(a²-ab+b²); 立方差公式:a3-b3=(a-b)(a²+ab+b²); 完全立方公式
3、:a3±3a2b+3ab2±b3=(a±b)3.【例】a²+4ab+4b² =(a+2b) ²三、分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。【例】m²+5n-mn-5m=m²-5m-mn+5n = (m²-5m)+(-mn+5n) =m(m-5)-n(m-5)=(m-5)(m-n).四、拆项、补项法这种方法指把多项式的某一项拆开或填补上互为相反数的
4、两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。【例】bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b).五、配方法对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。【例】x²+
5、3x-40=x²+3x+2.25-42.25=(x+1.5)²-(6.5)²=(x+8)(x-5).六、十字相乘法这种方法有两种情况: x²+(p+q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x²+(p+q)x+pq=(x+p)(x+q) . kx²+mx+n型的式子的因式分解如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx²+mx+n=(ax+b)(cx+d).图示如下:&
6、bull;a b•וc d例如:因为•1 -3•ו7 2且2-21=-19, 所以7x²-19x-6=(7x+2)(x-3).多项式因式分解的一般步骤>> 如果多项式的各项有公因式,那么先提公因式; 如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; 如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; 分解因式,必须进行到每一个多项式因式都不能再分解为止。也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”【例题】1.分解因式(1+y)
7、2-2x2(1+y2)+x4(1-y)2.解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)=(1+y)+x2(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)=(1+y)+x2(1-y)2-(2x)2=(1+y)+x2(1-y)+2x(1+y)+x2(1-y)-2x=(x2-x2y+2x+y+1)(x2-x2y-2x+y+1)=(x+1)2-y(x2-1)(x-1)2-y(x2-1)=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).2.求证:对于任何实数x,y,下式的值都不会为33:x5+3x4y-5x
8、3y2-15x2y3+4xy4+12y5.解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5)=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)=(x+3y)(x4-5x2y2+4y4)=(x+3y)(x2-4y2)(x2-y2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。3.ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。解:此题
9、实质上是对关系式的等号左边的多项式进行因式分解。证明:-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0.∴(a-c)(a+2b+c)=0.a、b、c是ABC的三条边,∴a+2b+c>0.∴a-c=0,即a=c,ABC为等腰三角形。4.把-12x2n×yn+18x(n+2)y(n+1)-6xn×y(n-1)分解因式。解:-12x2n×yn+18x(n+2)y(n+1)-6xn×y(n-1)=-6xn×y(n-1)(2xn×y-3x2y2
10、+1).七、应用因式定理对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.【例】f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)八、提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。如果多项式的第
11、一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。【例】-am+bm+cm=-m(a-b-c)a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)九、求根法令多项式f(x)=0,求出其根为x1,x2,x3,xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)(x-xn) .【例】在分解2x4+7x3-2x2-13x+6时,令2x4 +7x3-2x2-13x+6=0,则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.所以2x4+7x3-2x2-13x+6=(2x-1)(x+3)(x+2)(x-1
12、).令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3) (x-xn).与方法九相比,能避开解方程的繁琐,但是不够准确。【例】在分解x3 +2x2 -5x-6时,可以令y=x3 +2x2 -5x-6.作出其图像,与x轴交点为-3,-1,2 ,则x3 +2x2-5x-6=(x+1)(x+3)(x-2).十、双十字相乘法双十字相乘法属于因式分解的一类,类似于十字相乘法。用一道例题来说明如何使用。【例】分解因式:x2+5xy+6y2+8x+18y+12.解:这是一个二次六项式
13、,可考虑使用双十字相乘法进行因式分解。x 2y 2x 3y 6∴原式=(x+2y+2)(x+3y+6).双十字相乘法其步骤为>> 先用十字相乘法分解2次项,如十字相乘图中X2+5xy+6y2=(x+2y)(x+3y); 先依一个字母(如y)的一次系数分数常数项。如十字相乘图中6y2+18y+12=(2y+2)(3y+6); 再按另一个字母(如x)的一次系数进行检验,如十字相乘图,这一步不能省,否则容易出错。十一、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。十二、特殊值法将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组
14、合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。【例】在分解x3+9x2+23x+15时,令x=2,则x3 +9x2 +23x+15=8+36+46+15=105,将105分解成3个质因数的积,即105=3×5×7 .注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,则x3+9x2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。十三、待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。【例】在分解x4-x3-5x2-6x
15、-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。于是设x4-x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd,由此可得a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4.解得a=1,b=1,c=-2,d=-4.则x4-x3-5x2-6x-4=(x2+x+1)(x2-2x-4).课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、
16、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学
17、生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念
18、了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题分析问题解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。通过以上数学公式:因式分解的方法的学习后,想必同学们的学习会更进一步,如想了解更多请继续关注数学网。