1、专题11 圆锥曲线中的定点、定值问题一、题型选讲题型一 、圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。例1、【2020年高考全国卷理数】已知A、B分别为椭圆E:(a1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l
2、的倾斜角为45时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C:x2=2py经过点(2,1)(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=1分别交直线OM,ON于点A和点B求证:以AB为直径的圆经过y轴上的两个定点题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题探索圆锥曲线的定值问题常见方法有两种:从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;直接推
3、理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国卷】已知椭圆C:的离心率为,且过点A(2,1)(1)求C的方程:(2)点M,N在C上,且AMAN,ADMN,D为垂足证明:存在定点Q,使得|DQ|为定值例5、(2020届山东省泰安市高三上期末)已知椭圆的离心率e满足,右顶点为A,上顶点为B,点C(0,2),过点C作一条与y轴不重合的直线l,直线l交椭圆E于P,Q两点,直线BP,BQ分别交x轴于点M,N;当直线l经过点A时,l的斜率为(1)求椭圆E的方程;(2)证明:为定值例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy中,已知椭圆C1:y21,
4、椭圆C2:1(ab0),C2与C1的长轴长之比为1,离心率相同(1) 求椭圆C2的标准方程;(2) 设点P为椭圆C2上的一点射线PO与椭圆C1依次交于点A,B,求证:为定值;过点P作两条斜率分别为k1,k2的直线l1,l2,且直线l1,l2与椭圆C1均有且只有一个公共点,求证k1k2为定值二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆,为其右焦点,直线与椭圆交于两点,点在上,且满足.(点从上到下依次排列)(I)试用表示:(II)证明:原点到直线l的距离为定值.2、【2018年高考北京卷理数】已知抛物线C:=2px经过点(1,2)过点Q(0,1)的直线l与抛物线C有两个不同
5、的交点A,B,且直线PA交y轴于M,直线PB交y轴于N(1)求直线l的斜率的取值范围;(2)设O为原点,求证:为定值3、(2019苏锡常镇调研)已知椭圆E:1(ab0)的离心率为,焦点到相应准线的距离为.(1) 求椭圆E的标准方程;(2) 已知P(t,0)为椭圆E外一动点,过点P分别作直线l1和l2,直线l1和l2分别交椭圆E于点A,B和点C,D,且l1和l2的斜率分别为定值k1和k2,求证:为定值4、(2018苏州暑假测试)如图,已知椭圆O:y21的右焦点为F,点B,C分别是椭圆O的上、下顶点,点P是直线l:y2上的一个动点(与y轴的交点除外),直线PC交椭圆于另一个点M.(1) 当直线PM经过椭圆的右焦点F时,求FBM的面积;(2) 记直线BM,BP的斜率分别为k1,k2,求证:k1k2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy中, 已知圆O:x2y24,椭圆C:y21,A为椭圆右顶点过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中D(,0).设直线AB,AC的斜率分别为k1,k2.(1) 求k1k2的值;(2) 记直线PQ,BC的斜率分别为kPQ,kBC,是否存在常数,使得kPQkBC?若存在,求的值;若不存在,说明理由;(3) 求证:直线AC必过点Q.