1、专题03 导数及其应用(选填题)(文科专用)1【2022年全国甲卷】当x=1时,函数f(x)=alnx+bx取得最大值-2,则f(2)=()A-1B-12C12D1【答案】B【解析】【分析】根据题意可知f1=-2,f1=0即可解得a,b,再根据fx即可解出【详解】因为函数fx定义域为0,+,所以依题可知,f1=-2,f1=0,而fx=ax-bx2,所以b=-2,a-b=0,即a=-2,b=-2,所以fx=-2x+2x2,因此函数fx在0,1上递增,在1,+上递减,x=1时取最大值,满足题意,即有f2=-1+12=-12故选:B.2【2021年乙卷文科】设,若为函数的极大值点,则()ABCD【答
2、案】D【解析】【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,画出的图象如下图所示:由图可知,故.当时,由时,画出的图象如下图所示:由图可知,故.综上所述,成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.3【2019年新课标2卷文科】曲线y=2sinx+cosx在点(,1)处的
3、切线方程为ABCD【答案】C【解析】【分析】先判定点是否为切点,再利用导数的几何意义求解.【详解】当时,即点在曲线上则在点处的切线方程为,即故选C【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养采取导数法,利用函数与方程思想解题学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程4【2020年新课标1卷文科】曲线的一条切线的斜率为2,则该切线的方程为_.【答案】【解析】【分析】设切线的切点坐标为,对函数求导,利用,求出,代入曲线方程求出,得到切线的点斜式方程,化简即可.【
4、详解】设切线的切点坐标为,所以切点坐标为,所求的切线方程为,即.故答案为:.【点睛】本题考查导数的几何意义,属于基础题.5【2020年新课标3卷文科】设函数若,则a=_【答案】1【解析】【分析】由题意首先求得导函数的解析式,然后得到关于实数a的方程,解方程即可确定实数a的值【详解】由函数的解析式可得:,则:,据此可得:,整理可得:,解得:.故答案为:.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题.6【2018年新课标2卷文科】曲线在点处的切线方程为_【答案】【解析】【分析】求导,可得斜率,进而得出切线的点斜式方程.【详解】由,得,则曲线在点处的切线的斜率为,则所求切线方程为,即.【点睛】求曲线在某点处的切线方程的步骤:求出函数在该点处的导数值即为切线斜率;写出切线的点斜式方程;化简整理.