ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:245.46KB ,
资源ID:828128      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-828128-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题03 导数及其应用(选填题)(文科专用)(教师版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题03 导数及其应用(选填题)(文科专用)(教师版).docx

1、专题03 导数及其应用(选填题)(文科专用)1【2022年全国甲卷】当x=1时,函数f(x)=alnx+bx取得最大值-2,则f(2)=()A-1B-12C12D1【答案】B【解析】【分析】根据题意可知f1=-2,f1=0即可解得a,b,再根据fx即可解出【详解】因为函数fx定义域为0,+,所以依题可知,f1=-2,f1=0,而fx=ax-bx2,所以b=-2,a-b=0,即a=-2,b=-2,所以fx=-2x+2x2,因此函数fx在0,1上递增,在1,+上递减,x=1时取最大值,满足题意,即有f2=-1+12=-12故选:B.2【2021年乙卷文科】设,若为函数的极大值点,则()ABCD【答

2、案】D【解析】【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,画出的图象如下图所示:由图可知,故.当时,由时,画出的图象如下图所示:由图可知,故.综上所述,成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.3【2019年新课标2卷文科】曲线y=2sinx+cosx在点(,1)处的

3、切线方程为ABCD【答案】C【解析】【分析】先判定点是否为切点,再利用导数的几何意义求解.【详解】当时,即点在曲线上则在点处的切线方程为,即故选C【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养采取导数法,利用函数与方程思想解题学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程4【2020年新课标1卷文科】曲线的一条切线的斜率为2,则该切线的方程为_.【答案】【解析】【分析】设切线的切点坐标为,对函数求导,利用,求出,代入曲线方程求出,得到切线的点斜式方程,化简即可.【

4、详解】设切线的切点坐标为,所以切点坐标为,所求的切线方程为,即.故答案为:.【点睛】本题考查导数的几何意义,属于基础题.5【2020年新课标3卷文科】设函数若,则a=_【答案】1【解析】【分析】由题意首先求得导函数的解析式,然后得到关于实数a的方程,解方程即可确定实数a的值【详解】由函数的解析式可得:,则:,据此可得:,整理可得:,解得:.故答案为:.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题.6【2018年新课标2卷文科】曲线在点处的切线方程为_【答案】【解析】【分析】求导,可得斜率,进而得出切线的点斜式方程.【详解】由,得,则曲线在点处的切线的斜率为,则所求切线方程为,即.【点睛】求曲线在某点处的切线方程的步骤:求出函数在该点处的导数值即为切线斜率;写出切线的点斜式方程;化简整理.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1