1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末定向测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90
2、,得到,则点的坐标为()ABCD2、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()ABCD3、已知点在半径为8的外,则()ABCD4、设方程的两根分别是,则的值为()A3BCD5、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,是的直径,交于点,交于点,是的中点,连接则下列结论正确的是()ABCD是的切线2、已知,的半径为5,某条经过点的弦的长度为整数,则该弦的长度可能为()A4B6C
3、8D103、若为圆内接四边形,则下列哪个选项可能成立()ABCD4、已知二次函数yax2bxc(a0)的图象如图所示,下列结论正确的有( ) 线 封 密 内 号学级年名姓 线 封 密 外 A2ab0Babc0C4a2bc0Dac05、在图形旋转中,下列说法正确的是()A在图形上的每一点到旋转中心的距离相等B图形上每一点转动的角度相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在RtABC中,ACB90,点D为AB的中点,点P在AC上,且CP1,将CP绕点C在平面内旋转,点P的对应点为点Q,
4、连接AQ,DQ当ADQ90时,AQ的长为_2、若二次函数的顶点在x轴上,则_3、一元二次方程的解为_4、如图,在平面直角坐标系中,点A在抛物线yx22x2上运动过点A作ACx轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_5、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _四、解答题(5小题,每小题8分,共计40分)1、解下列方程:(1);(2)2、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C(1)求证:CBPD;(2)若ABC=55,求P的度数 线 封 密 内 号学级年名姓 线 封 密 外 3、判断2、5、-4是不
5、是一元二次方程的根4、已知抛物线过点(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角若A与Q重合,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标5、一个二次函数y=(k1)求k值-参考答案-一、单选题1、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键2、C【解析】【分析】利用列表法或树状图即可解决【详解】分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白
6、色围巾,列表如下:RBWrrRrBrW 线 封 密 内 号学级年名姓 线 封 密 外 bbRbBbW则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是故选:C【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解3、A【解析】【分析】根据点P与O的位置关系即可确定OP的范围【详解】解:点P在圆O的外部,点P到圆心O的距离大于8,故选:A【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法4、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解
7、】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率5、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可【详解】解:设有x个队参赛,根据题意,可列方程为:x(x1)36,故选A【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.二、多选题1、BCD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 首先由是的直径,得出,推出,根据是的中点,得出是的中位线,得到,
8、再由,推出是的中位线,得,即是的切线,最后由假设推出不正确【详解】解:连接,是的直径,(直径所对的圆周角是直角),;而在中,是边上的中线,选项符合题意);是的直径,选项符合题意),是的中位线,即:,是的中点,是的中位线,是的切线选项符合题意);只有当是等腰直角三角形时,故选项错误,不符合题意,故选:BCD【考点】本题考查的知识点是切线的判定与性质、等腰三角形的性质及圆周角定理,解题的关键是运用等腰三角形性质及圆周角定理及切线性质作答2、CD【解析】【分析】过P作弦ABOP,连接OA,根据垂径定理求出AP=BP,根据勾股定理求出AP,再求出AB,再得出答案即可【详解】解:过P作弦ABOP,连接O
9、A,如图,OA=5,OP=3, 线 封 密 内 号学级年名姓 线 封 密 外 OPAB,OP过圆心O,AP=BP=4,即AB=4+4=8,过P点长度为整数的弦有4条,过P点最短的弦的长度是8,过P点最长的弦的长度是10,还有两条弦,长度是9,故答案为:CD【考点】本题考查了勾股定理和垂径定理,能熟记垂径定理是解此题的关键3、BD【解析】【分析】根据圆内接四边形的性质得出A+C=B+D=180,再逐个判断即可【详解】解:四边形ABCD是圆内接四边形,A+C=180,B+D=180,A+C=B+D,A,A+CB+D,故本选项不符合题意;B,A+C=B+D,故本选项符合题意;C,A+CB+D,故本选
10、项不符合题意;D,A+C=B+D,故本选项符合题意;故选:BD【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补4、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:,故A选项正确;abc0,故B选项错误;根据图象可知,当x=-2时,故C选项错误;根据图象可知,当x=-1时,故D选项正确故选:AD【考点】本题考查了二次函数图象判定式子的正负二次函数yax2bxc系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点确定
11、,注意特殊点的函数值5、BCD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意;B、 由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、 由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD【考点】本题主要考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相
12、等三、填空题1、或#或【解析】【分析】连接,根据题意可得,当ADQ90时,分点在线段上和的延长线上,且,勾股定理求得即可【详解】如图,连接,在RtABC中,ACB90,根据题意可得,当ADQ90时,点在上,且,如图,在中,在中,故答案为:或 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键2、-2或【解析】【分析】根据二次函数一般式的顶点坐标公式表示出顶点,再根据顶点在x轴上,建立等量关系求解即可【详解】解: 的顶点坐标为: 顶点在x轴上解得: 故答案为:或【考点】本题考查二次函数一般式的顶点坐标,掌握二
13、次函数一般式的顶点坐标公式是解题关键3、x=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可【详解】当x2=0时,x=2,当x20时,4x=1,x=,故答案为:x=或x=2【考点】本题考查解一元二次方程,本题关键在于分情况讨论4、1【解析】【分析】由矩形的性质可知BDAC,再结合顶点到x轴的距离最近可知当点A在顶点处时满足条件,求得抛物线的顶点坐标即可求得答案【详解】解:ACx轴,当点A为抛物线顶点时,AC有最小值,抛物线yx22x2(x1)21,顶点坐标为(1,1),AC的最小值为1,四边形ABCD为矩形,BDAC,BD的最小值为1,故答案为:1 线 封 密 内 号学级年名姓 线
14、封 密 外 【考点】本题主要考查了二次函数的性质及矩形的性质,确定出AC最小时的位置是解题的关键5、17【解析】【分析】根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,10+k=12,解得k=2或k=-22(舍去),k的最大值是15,最小值是2,k的最大值与最小值的和为15+2=17故答案为:
15、17【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键四、解答题1、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【考点】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程
16、,要针对不同的方程选取恰当的方法是解题关键2、(1)证明见解析;(2)35【解析】【详解】试题分析:(1)要证明CBPD,只要证明1=P;由1=C,P=C,可得1=P,即可解决问题; 线 封 密 内 号学级年名姓 线 封 密 外 (2)在RtCEB中,求出C即可解决问题.试题解析:(1)如图,1=C,P=C,1=P,CBPD;(2)CDAB,CEB=90,CBE=55,C=9055=35,P=C=35.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识3、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行
17、验证即可.【详解】解:将x=2代入可得:6=6,故x=2是该一元二次方程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【考点】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.4、(1);(2)1;点C的坐标是【解析】【分析】(1)将两点分别代入,得,解方程组即可;(2)根据AB=4,斜边上的高为2,Q的横坐标为1,计算点C的横坐标为-1,即到y轴的距离为1;根据直线PQ的解析式,设点A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代数式表示点C的坐标,代入抛物线解析式求解
18、即可.【详解】解:(1)将两点分别代入,得解得所以抛物线的解析式是(2)如图2,抛物线的对称轴是y轴,当点A与点重合时,作于H是等腰直角三角形,和也是等腰直角三角形,点C到抛物线的对称轴的距离等于1 线 封 密 内 号学级年名姓 线 封 密 外 如图3,设直线PQ的解析式为y=kx+b,由,得解得直线的解析式为,设,所以所以将点代入,得整理,得因式分解,得解得,或(与点P重合,舍去)当时,所以点C的坐标是【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键5、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【考点】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件