收藏 分享(赏)

2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx

上传人:a**** 文档编号:647527 上传时间:2025-12-12 格式:DOCX 页数:24 大小:533.36KB
下载 相关 举报
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第1页
第1页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第2页
第2页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第3页
第3页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第4页
第4页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第5页
第5页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第6页
第6页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第7页
第7页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第8页
第8页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第9页
第9页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第10页
第10页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第11页
第11页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第12页
第12页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第13页
第13页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第14页
第14页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第15页
第15页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第16页
第16页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第17页
第17页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第18页
第18页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第19页
第19页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第20页
第20页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第21页
第21页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第22页
第22页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第23页
第23页 / 共24页
2022-2023学年解析卷人教版九年级数学上册期末综合测试试题 卷(Ⅱ)(解析卷).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法

2、:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D42、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m3、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有()A2 个B3 个C4 个D5 个4、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为(

3、)ABCD5、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,在的网格中,点,均在网格的格点上,下面结论正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 A点是的外心B点是的外心C点是的外心D点是的外心2、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是()ABCD3、如图在四边形中,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是()A是劣弧的中点B是圆的切线CD4、下列图案中,是中心对称图形的是(

4、)ABCD5、运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567h08141820201814下列结论正确的是()A足球距离地面的最大高度为20mB足球飞行路线的对称轴是直线C足球被踢出9s时落地D足球被踢出1.5s时,距离地面的高度是11m第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、二次函数的部分图象如图所示,由图象可知,方程的解为_;不等式的解集为_2、抛物线的图象和轴有交点,则的取值范围是_3、九章算术是我国古代的数学名著

5、,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多 线 封 密 内 号学级年名姓 线 封 密 外 尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程_4、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃设花圃的宽AB为x米,面积为S平方米则S与x的函数关系式是_,自变量x的取值范围是_5、若函数图像与x轴的两个交点坐标为和,则_四、解答题(5小题,每小题8分,共计40分)1、已知抛物线(1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,),N(2,)在该抛物线上,

6、若,求m的取值范围2、如图,在RtABC中,C90,BD平分ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是O的切线;(2)若OB2,CD,求图中阴影部分的面积(结果保留)3、已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值4、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);5、解方程(1)(x+1)

7、264=0(2)x24x+1=0(3)x2 + 2x20(配方法)(4)x 2-2x-8=0-参考答案-一、单选题1、C【解析】【分析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 线 封 密 内 号学级年名姓 线 封 密 外 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关

8、键2、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质3、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的

9、交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:(1)函数开口向下,a0,对称轴在y轴的右边,b0,故命题正确;(2)a0,b0,c0,abc0,故命题正确;(3)当x=-1时,y0,a-b+c0,故命题错误;(4)当x=1时,y0,a+b+c0,故命题正确;(5)抛物线与x轴于两个交点,b2-4ac0,故命题正确;故选C【考点】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及 线 封 密 内 号学级年名姓 线 封 密 外 二次函数与方程之间的转换,根的判别式的熟练运用4、B【解析】【分析】先求出平移

10、后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键5、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线

11、的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质二、多选题1、ABCD【解析】【分析】连接HB、HD,利用勾股定理可得,则根据三角形外心的定义可对四个选项进行判断【详解】解:如图,连接HB、HD,根据勾股定理可得:,点是的外心,点

12、是的外心,点是的外心,点是的外心,ABCD都是正确的故选:ABCD【考点】本题考查了三角形的外心和勾股定理的应用,熟练掌握三角形的外心到三角形的三个顶点的距离相等是解决本题的关键2、ABC【解析】【分析】根据根的判别式=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用【详解】解:A、=b2-4ac=02-414=-160,此方程没有实数根,故本选项符合题意;B、=b2-4ac=(-4)2-414=0,此方程有两个相等的实数根,故本选项符合题意;C、=b2-4ac=12-413=-110,此方程没有实数根,故本选项符合题意;D、=b2-4ac=22-41(-1)=

13、80,此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC【考点】本题考查了一元二次方程根的判别式的知识此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根3、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案【详解】解:A.BAD=25,EAD=25, 线 封 密 内 号学级年名姓 线 封 密 外 DAB=EAD,故此选项正确;B.BAD=25,OA=OD,ADO=B

14、AD=25ADC=115,ODC=ADC-ADC=115-25=90,CD是O的切线,故此选项正确;CEAD=ADO=25AEDO,故此选项正确;D,OBC=360-DAB-ADC-C=360-25-115-90=130,故此选项错误故选择ABC【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键4、ABD【解析】【分析】在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,这个图形就是中心对称图形,根据定义判断即可【详解】、是中心对称图形,选项正确;B、是中心对称图形,选项正确;C、不是中心对称图形,

15、选项错误;D、是中心对称图形,选项正确故选:ABD【考点】本题考查中心对称图形的定义,牢记定义是解题关键5、BC【解析】【分析】由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为hat(t9),把(1,8)代入可得a1,可得ht2+9t(t4.5)2+20.25,由此即可一一判断【详解】解:由题意,抛物线的解析式为hat(t9),把(1,8)代入可得a1,ht2+9t(t4.5)2+20.25,足球距离地面的最大高度为20.25m,故A错误,抛物线的对称轴t4.5,故B正确,t9时,h0,足球被踢出9s时落地,故C正确,t1.5时,h11.25,故D错误 线 封 密 内 号

16、学级年名姓 线 封 密 外 正确的有,故选:BC【考点】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型三、填空题1、 , 或【解析】【分析】根据抛物线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案【详解】抛物线的对称轴为,抛物线与x轴一个交点为(5,0)抛物线与x轴另一个交点为(-1,0)方程的解为:,由图像可知,不等式的解集为:或故答案为:,;或【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键2、且【解析】【分析】由题意知,计算求解即可【详解】解

17、:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数3、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或故答案为:或【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次 线 封 密 内 号学级年名姓 线 封 密 外 方程是解题的关键4、 S3x224x x8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长宽,得出S与x的函数关系式,并根据墙的最大

18、可用长度为10米,列不等式组即可得出自变量的取值范围解:由题可知,花圃的宽AB为x米,则BC为(243x)米.S=x(243x)=3x2+24x.0243x10,解得x8,故答案为S3x224x,x8.5、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键四、解答题1、(1)直线x=-1;(2)或;(3)当a0时,m4或m2

19、;当a0时,4m2【解析】【分析】(1)利用二次函数的对称轴公式即可求得(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式(3)分类讨论当a0时和a0时二次函数的性质,即可求出m的取值范围【详解】(1)利用二次函数的对称轴公式可知对称轴故答案为:(2)抛物线顶点在x轴上,对称轴为,顶点坐标为(-1,0)将顶点坐标代入二次函数解析式得:,整理得:,解得:抛物线解析式为或 线 封 密 内 号学级年名姓 线 封 密 外 (3)抛物线的对称轴为直线x-1,N(2,y2)关于直线x-1的对称点为(-4,y2)根据二次函数的性质分类讨论()当a0时,抛物线开口向上,若y1y2,即点M在点N

20、或的上方,则m-4或m2;()当a0时,抛物线开口向下,若y1y2,即点M在点N或的上方,则4m2【考点】本题为二次函数综合题,掌握二次函数的性质是解答本题的关键2、(1)见解析;(2)【解析】【分析】(1)欲证明AC是O的切线,只要证明ODAC即可(2)证明OBE是等边三角形即可解决问题【详解】(1)证明:连接OD,如图,BD为ABC平分线,12,OBOD,13,23,ODBC,C90,ODA90,ODAC,AC是O的切线(2)过O作OGBC,连接OE,则四边形ODCG为矩形,GCODOB2,OGCD,在RtOBG中,利用勾股定理得:BG1,BE2,则OBE是等边三角形,阴影部分面积为2【考

21、点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、 (1)见解析(2)(3)的值为1或-5【解析】【分析】()计算判别式的值,得到,即可判定;()计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可; 线 封 密 内 号学级年名姓 线 封 密 外 ()先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可(1)证明:令,则不论为何实数,方程有两个不相等的实数根无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线,抛物线开口向上抛物线上的点离

22、对称轴越远对应的函数值越大点到对称轴的距离为:1点到对称轴的距离为:2(3)解:抛物线沿轴翻折后的函数解析式为该抛物线的对称轴为直线若,即,则当时,有最小值解得,若,即,则当时,有最小值-1不合题意,舍去若,则当时,有最小值解得,综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键4、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2)

23、,(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求

24、解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解5、(1)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移项后,运用直接开平方法求解即可;(2)根据配方法解一元二次方程的步骤依次计算即可;(3)根据配方法解一元二次方程的步骤依次计算即可;(4)根据因式分解法求解即可【详解】解:(1)(x+1)2=64x+1=8x1=7,x2=-9(2)x24x=-1x24x+4=-1+4(x-2)2=3x-2=x1=2+,x2=2-(3)x2 + 2x2x2 + 2x+12+1(x+1)2=3x+1=x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0x1=-2,x2=4【考点】本题考查一元二次方程的求解,选择适合的方法是解题关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1