1、第三章 空间向量与立体几何一、选择题1下列各组向量中不平行的是( )A BC D2已知点,则点关于轴对称的点的坐标为( )A B C D3若向量,且与的夹角余弦为,则等于( )A B C或 D或4若A,B,C,则ABC的形状是( )A不等边锐角三角形 B直角三角形 C钝角三角形 D等边三角形5若A,B,当取最小值时,的值等于( )A B C D6空间四边形中,则的值是( )A B C D二、填空题1若向量,则_。2若向量,则这两个向量的位置关系是_。3已知向量,若,则_;若则_。4已知向量若则实数_,_。5若,且,则与的夹角为_。6若,是平面内的三点,设平面的法向量,则_。7已知空间四边形,点
2、分别为的中点,且,用,表示,则=_。8已知正方体的棱长是,则直线与间的距离为 。空间向量与立体几何解答题精选1已知四棱锥的底面为直角梯形,底面,且,是的中点。()证明:面面;()求与所成的角;()求面与面所成二面角的大小。2如图,在四棱锥中,底面是正方形,侧面是正三角形,平面底面 ()证明:平面; ()求面与面所成的二面角的大小3如图,在四棱锥中,底面为矩形,侧棱底面, , 为的中点.()求直线与所成角的余弦值;()在侧面内找一点,使面,并求出点到和的距离.4如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中. ()求的长; ()求点到平面的距离.5如图,在长方体,中,点在棱上移动.(1)证明:; (2)当为的中点时,求点到面的距离; (3)等于何值时,二面角的大小为.6如图,在三棱柱中,侧面,为棱上异于的一点,已知,求: ()异面直线与的距离; ()二面角的平面角的正切值. 7如图,在四棱锥中,底面为矩形,底面,是 上一点,. 已知求()异面直线与的距离; ()二面角的大小.