1、开滦二中20152016学年第一学期高二年级10月考试数学试卷 命题人:杨秀江说明:1、本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第(1)页至第(4)页,第卷第(5)页至第(8)页。2、本试卷共150分,考试时间120分钟。第卷(选择题,共60分)注意事项:1、答第卷前,考生务必将自己的准考证号、科目填涂在答题卡上。2、每小题选出答案后,用2B铅笔把答题卡上对应的题目标号涂黑。答在试卷上无效。3、考试结束后,监考人员将试卷答题卡和机读卡一并收回。一、选择题(每题5分,共60分,每小题只有一个选项是正确的,请将正确选项填涂在答题卡上)1下列命题中,错误的是( )A一条直线与两个平行平面
2、中的一个相交,则必与另一个相交B平行于同一直线的两个平面平行 C平行于同一平面的两个平面平行D一个平面与两个平行平面相交,交线平行2一个几何体的三视图如图所示,已知这个几何体的体积为,则( )A B C D3如图,已知正方体ABCDA1B1ClD1的棱长为a,点M为线段AD1的中点三棱锥D1-BMC的正视图面积等于( )A B C D4已知是一条直线,是两个不同的平面,则以下几个命题正确( )A若 BC D5如图,ABCDA1B1C1D1为正方体,下面结论错误的是( )ABD平面CB1D1 BAC1BDCAC1平面CB1D1 D异面直线AD与CB1所成的角为606如图,在正三棱柱ABC-A1B
3、1C1中,AB=AA1=2,直线AC1与平面BCC1B1所成角的余弦值等于( )A B C D 7已知m,n是两条不同直线,,是两个不同的平面,且n,则下列叙述正确的是( )A若mn,n,则B若, m则mnC若mn,m,则D若, mn,则m8三棱锥的所有顶点都在球O的表面上,又,则球的表面积为( )A B C3 D129如图,在三棱锥SABC中,SA丄平面ABC,SA = 3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为( )ASPCB(A) (B) (C) (D) 第9题图第10题图10如图,在正三棱柱中,AB1,若二面角的大小为60,则点到平面的距离为 (
4、)A1 B C D11某几何体的三视图如图所示,则该几何体的体积为( )侧视图正视图俯视图222(A) (B) (C) (D)12如图,棱长为1的正方体ABCD-A1B1C1D1中,为线段A1B上的动点,则下列结论错误的有几个( ) 平面平面 的最大值为 的最小值为(A)0个 (B)1个 (C)2个 (D)3个考场号座位号准考证号姓 名班 级学 校 密 封 线 内 不 要 答 题 密 封 线 内 不 要 答 题开滦二中20152016学年度高二年级10月考试数学试题第卷(非选择题,共90分)二、填空题(每题5分,共20分)13若圆锥的母线长为,侧面积为,则此圆锥的体积_858正视图侧视图俯视图
5、55514一个几何体的三视图及其尺寸(单位:cm) ,如图所示,则该几何体的侧面积为_cm215半径为R的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为_ _16已知直线平面,直线m平面,有下列命题:m; m;m; m其中正确命题的序号是。三、解答题(写必要的解题过程)17(本题满分10分)如图是一个几何体的正视图和俯视图正视图侧视图俯视图aaaa2a2aa(1)画出其侧视图,判断该几何体是什么几何体;(2)求出该几何体的体积和全面积18(本题满分为12分)如图所示:已知O所在的平面,AB是O的直径,C是O上任意一点,过A作于E,求证:. PABCOE 19(本小题满分12分)
6、如图,为正三角形,平面,为的中点,()求证:平面;()求多面体的体积PSAQOB20(本题满分12分)如图,已知圆锥的底面半径为,点Q为半圆弧的中点,点为母线的中点若直线与所成的角为,求此圆锥的表面积21如图,在四棱锥中,底面是直角梯形,垂直于和,侧棱平面,且(1)求与成角;(2)求面与面ABCD所成的二面角的余弦值22如图,是半圆的直径,是半圆上除、外的一个动点,平面,,证明:平面平面;试探究当在什么位置时三棱锥的体积取得最大值,请说明理由并求出这个最大值高二年级数学10月考参考答案一、选择题1 B 2 B 3 B 4 C 5 D 6 D 7 C 8 C 9D 10 D 11 C 12 B二
7、、填空题13 1480 15R 16与 三、解答題:17解:(1)侧视图见下图,该几何体是一个正六棱锥. -(3分)(2)正六棱锥的侧棱长是,底面边长是它是由六个腰长是,底面边长是的等腰三角形与一个底面边长是的正六边形围成=-(7分)由正视图可知,正六棱锥的高,底面积, -(10分)18PABCOE证明:由PA面ABC,BC面ABC,所以PA BC,又因为,,所以面ACP -(5分)又因为AE面ACP,所以 ,又因为,所以面PBC。-(12分)19()证明:作的中点,连结,FO在中,又据题意知,四边形为平行四边形,-(4分)又面,平面面 -(6分)()解:据题意知,多面体为四棱锥过点作于平面,
8、平面,平面平面又,平面,平面平面,面在四棱锥中,底面为直角梯形,高多面体的体积为 -(12分)20PSAQOBM解:取OA的中点M,连接PM,又点P为母线的中点所以,故为与所成的角-(2分)在中,-(4分)由点Q为半圆弧的中点知,在中,故,所以, -(8分)所以, -(12分)21(1);(2).ADACBSE解:(1)取BC的中点E,连接AE、SE,由题意知AE/DC所以SAE即为SA与CD所成的角或其补角在SAE中,SA=,AE=CD=,SE=所以SAE为等边三角所以SAE= -(6分)(2)连接BD,由题意知,又因为面ABCD ,所以,所以面SBD,所以SD所以SDB即为面与面ABCD所成的二面角 -(10分)在RtSBD中,SB=1,BD=,所以SD=所以cosSDB=即为面与面ABCD所成的二面角余弦值为 -(12分)22解:因为是直径,所以,因为平面,因为,所以平面 -(4分)因为,又因为,所以四边形是平行四边形,所以,所以平面,因为平面,所以平面平面 -(6分)依题意, -(8分)由知,等号当且仅当时成立,所以当为半圆弧中点时三棱锥的体积取得最大值,最大值为 -(12分)(备注:此时,设三棱锥的高为,则,)版权所有:高考资源网()