收藏 分享(赏)

小学数学典型应用题精讲宝典.doc

上传人:a**** 文档编号:481611 上传时间:2025-12-08 格式:DOC 页数:21 大小:114.50KB
下载 相关 举报
小学数学典型应用题精讲宝典.doc_第1页
第1页 / 共21页
小学数学典型应用题精讲宝典.doc_第2页
第2页 / 共21页
小学数学典型应用题精讲宝典.doc_第3页
第3页 / 共21页
小学数学典型应用题精讲宝典.doc_第4页
第4页 / 共21页
小学数学典型应用题精讲宝典.doc_第5页
第5页 / 共21页
小学数学典型应用题精讲宝典.doc_第6页
第6页 / 共21页
小学数学典型应用题精讲宝典.doc_第7页
第7页 / 共21页
小学数学典型应用题精讲宝典.doc_第8页
第8页 / 共21页
小学数学典型应用题精讲宝典.doc_第9页
第9页 / 共21页
小学数学典型应用题精讲宝典.doc_第10页
第10页 / 共21页
小学数学典型应用题精讲宝典.doc_第11页
第11页 / 共21页
小学数学典型应用题精讲宝典.doc_第12页
第12页 / 共21页
小学数学典型应用题精讲宝典.doc_第13页
第13页 / 共21页
小学数学典型应用题精讲宝典.doc_第14页
第14页 / 共21页
小学数学典型应用题精讲宝典.doc_第15页
第15页 / 共21页
小学数学典型应用题精讲宝典.doc_第16页
第16页 / 共21页
小学数学典型应用题精讲宝典.doc_第17页
第17页 / 共21页
小学数学典型应用题精讲宝典.doc_第18页
第18页 / 共21页
小学数学典型应用题精讲宝典.doc_第19页
第19页 / 共21页
小学数学典型应用题精讲宝典.doc_第20页
第20页 / 共21页
小学数学典型应用题精讲宝典.doc_第21页
第21页 / 共21页
亲,该文档总共21页,全部预览完了,如果喜欢就下载吧!
资源描述

1、小学数学典型应用题精讲宝典应用题类型:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归

2、一问题。【数量关系】 总量份数1份数量 1份数量所占份数所求几份的数量 另一总量(总量份数)所求份数【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.650.12(元) (2)买16支铅笔需要多少钱?0.12161.92(元)列成综合算式 0.65160.12161.92(元) 答:需要1.92元。例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 903310(公顷) (2)5台拖拉机6天耕地多少公顷? 1056300(

3、公顷)列成综合算式 9033561030300(公顷) 答:5台拖拉机6 天耕地300公顷。例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 (1)1辆汽车1次能运多少吨钢材? 100545(吨) (2)7辆汽车1次能运多少吨钢材? 5735(吨) (3)105吨钢材7辆汽车需要运几次? 105353(次)列成综合算式 105(100547)3(次) 答:需要运3次。2 归总问题【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总

4、路程等。【数量关系】 1份数量份数总量 总量1份数量份数 总量另一份数另一每份数量【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解 (1)这批布总共有多少米? 3.27912531.2(米) (2)现在可以做多少套? 2531.22.8904(套)列成综合算式 3.27912.8904(套) 答:现在可以做904套。例2 小华每天读24页书,12天读完了红岩一书。小明每天读36页书,几天可以读完红岩?解 (1)红岩这本书总共多少页? 2412288(页) (2)

5、小明几天可以读完红岩? 288368(天)列成综合算式 2412368(天) 答:小明8天可以读完红岩。例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解 (1)这批蔬菜共有多少千克? 50301500(千克) (2)这批蔬菜可以吃多少天? 1500(5010)25(天)列成综合算式 5030(5010)15006025(天) 答:这批蔬菜可以吃25天。3 和差问题【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】 大数(和差) 2 小数(和差) 2【解题思路和方法

6、】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解 甲班人数(986)252(人) 乙班人数(986)246(人) 答:甲班有52人,乙班有46人。例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。解 长(182)210(厘米) 宽(182)28(厘米)长方形的面积 10880(平方厘米) 答:长方形的面积为80平方厘米。例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(3230)2千

7、克,且甲是大数,丙是小数。由此可知甲袋化肥重量(222)212(千克)丙袋化肥重量(222)210(千克)乙袋化肥重量321220(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(1423),甲与乙的和是97,因此甲车筐数(971423)264(筐)乙车筐数976433(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。4 和倍问题【含义】 已知两个数的和及大

8、数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】 总和 (几倍1)较小的数 总和 较小的数 较大的数 较小的数 几倍 较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解 (1)杏树有多少棵? 248(31)62(棵) (2)桃树有多少棵? 623186(棵)答:杏树有62棵,桃树有186棵。例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解 (1)西库存粮数480(1.41)200(吨) (2

9、)东库存粮数480200280(吨)答:东库存粮280吨,西库存粮200吨。例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(2824)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(5232)就相当于(21)倍,那么,几天以后甲站的车辆数减少为 (5232)(21)28(辆)所求天数为 (5228)(2824)6(天)答:6天以后乙站车辆数是甲站的2倍。例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3

10、倍多6,求三数各是多少?解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(17046)就相当于(123)倍。那么,甲数(17046)(123)28乙数282452丙数283690答:甲数是28,乙数是52,丙数是90。5 差倍问题【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】 两个数的差(几倍1)较小的数 较小的数几倍较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用

11、公式。例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?解 (1)杏树有多少棵? 124(31)62(棵) (2)桃树有多少棵? 623186(棵)答:果园里杏树是62棵,桃树是186棵。例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解 (1)儿子年龄27(41)9(岁) (2)爸爸年龄9436(岁)答:父子二人今年的年龄分别是36岁和9岁。例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解 如果把上月盈利作为1倍量,则(3012)万元就相

12、当于上月盈利的(21)倍,因此 上月盈利(3012)(21)18(万元)本月盈利183048(万元)答:上月盈利是18万元,本月盈利是48万元。例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(13894)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(13894)就相当于(31)倍,因此剩下的小麦数量(13894)(31)22(吨)运出的小麦数量942272(吨)运粮的天数7298(天)答:8天以后剩下的玉米是小麦的3倍。6 倍比问题【含义】 有

13、两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】 总量一个数量倍数 另一个数量倍数另一总量【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解 (1)3700千克是100千克的多少倍? 370010037(倍) (2)可以榨油多少千克? 40371480(千克)列成综合算式 40(3700100)1480(千克)答:可以榨油1480千克。例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师

14、生共植树多少棵?解 (1)48000名是300名的多少倍? 48000300160(倍) (2)共植树多少棵? 40016064000(棵)列成综合算式 400(48000300)64000(棵)答:全县48000名师生共植树64000棵。例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解 (1)800亩是4亩的几倍? 8004200(倍) (2)800亩收入多少元? 111112002222200(元) (3)16000亩是800亩的几倍? 1600080020(倍) (4)16000亩收入多少元

15、? 22222002044444000(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。7 相遇问题【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间总路程(甲速乙速)总路程(甲速乙速)相遇时间【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解 392(2821)8(小时)答:经过8小时两船相遇。例2 小李和小刘在周

16、长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为4002相遇时间(4002)(53)100(秒)答:二人从出发到第二次相遇需100秒时间。例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(32)千米,因此,相遇时间(32)(1513)

17、3(小时)两地距离(1513)384(千米)答:两地距离是84千米。8 追及问题【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】 追及时间追及路程(快速慢速) 追及路程(快速慢速)追及时间【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解 (1)劣马先走12天能走多少千米? 7512900(千米)

18、(2)好马几天追上劣马? 900(12075)20(天)列成综合算式 7512(12075)9004520(天)答:好马20天能追上劣马。例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用40(500200)秒,所以小亮的速度是 (500200)40(500200)3001003(米)答:小亮的速度是每秒3米

19、。例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解 敌人逃跑时间与解放军追击时间的时差是(2216)小时,这段时间敌人逃跑的路程是10(2216)千米,甲乙两地相距60千米。由此推知追及时间10(2216)60(3010)120206(小时)答:解放军在6小时后可以追上敌人。例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。解 这道题可

20、以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(162)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为 162(4840)4(小时)所以两站间的距离为 (4840)4352(千米)列成综合算式 (4840)162(4840)884352(千米)答:甲乙两站的距离是352千米。例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(1802)米,这是因为哥哥

21、比妹妹每分钟多走(9060)米,那么,二人从家出走到相遇所用时间为1802(9060)12(分钟)家离学校的距离为 9012180900(米)答:家离学校有900米远。例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(105)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(105)分钟。如果从家一开始就跑步,可比步行少9分钟,由此

22、可知,行1千米,跑步比步行少用9(105)分钟。所以 步行1千米所用时间为 19(105)0.25(小时)15(分钟)跑步1千米所用时间为 159(105)11(分钟)跑步速度为每小时 111605.5(千米)答:孙亮跑步速度为每小时 5.5千米。9 植树问题【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】 线形植树 棵数距离棵距1 环形植树 棵数距离棵距 方形植树 棵数距离棵距4 三角形植树 棵数距离棵距3 面积植树 棵数面积(棵距行距)【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例1 一条河堤

23、136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解 1362168169(棵)答:一共要栽69棵垂柳。例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解 4004100(棵) 答:一共能栽100棵白杨树。例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解 2204841104106(个)答:一共可以安装106个照明灯。例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解 96(0.60.4)960.24400(块)答:至少需要400块地板砖

24、。例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解 (1)桥的一边有多少个电杆? 50050111(个) (2)桥的两边有多少个电杆? 11222(个) (3)大桥两边可安装多少盏路灯?22244(盏)答:大桥两边一共可以安装44盏路灯。10 年龄问题【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方

25、法】 可以利用“差倍问题”的解题思路和方法。 两个数的差(几倍1)较小的数例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解 3557(倍) (35+1)(5+1)6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?解 (1)母亲比女儿的年龄大多少岁? 37730(岁) (2)几年后母亲的年龄是女儿的4倍?30(41)73(年)列成综合算式 (377)(41)73(年)答:3年后母亲的年龄是女儿的4倍。例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?解

26、今年父子的年龄和应该比3年前增加(32)岁,今年二人的年龄和为 493255(岁)把今年儿子年龄作为1倍量,则今年父子年龄和相当于(41)倍,因此,今年儿子年龄为 55(41)11(岁)今年父亲年龄为 11444(岁)答:今年父亲年龄是44岁,儿子年龄是11岁。例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?(可用方程解)解这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:过去某一年今 年将来某一年甲岁岁61岁乙4岁岁岁表中两个“”表示同一个数,两个“”表示同一个数。因为两个人的年龄差总

27、相等:461,也就是4,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (614)319(岁)甲今年的岁数为 611942(岁)乙今年的岁数为 421923(岁)答:甲今年的岁数是42岁,乙今年的岁数是23岁。11 行船问题【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。【数量关系】 (顺水速度逆水速度)2船速 (顺水速度逆水速度)2水速 顺水速船速2逆水速逆水速水速2 逆水速船速2顺水速顺水速水速2【解题思

28、路和方法】 大多数情况可以直接利用数量关系的公式。例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解 由条件知,顺水速船速水速3208,而水速为每小时15千米,所以,船速为每小时 32081525(千米)船的逆水速为 251510(千米)船逆水行这段路程的时间为 3201032(小时)答:这只船逆水行这段路程需用32小时。例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?解由题意得 甲船速水速3601036 甲船速水速3601820可见 (3620)相当于水速的2倍,所以, 水速为每

29、小时 (3620)28(千米)又因为, 乙船速水速36015,所以, 乙船速为 36015832(千米)乙船顺水速为 32840(千米)所以, 乙船顺水航行360千米需要 360409(小时)答:乙船返回原地需要9小时。例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?解 这道题可以按照流水问题来解答。(1)两城相距多少千米? (57624)31656(千米)(2)顺风飞回需要多少小时? 1656(57624)2.76(小时) 列成综合算式 (57624)3(57624)2.76(小时)答:飞机顺风飞回需要2.76

30、小时。12 列车问题【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。【数量关系】 火车过桥:过桥时间(车长桥长)车速 火车追及:追及时间(甲车长乙车长距离)(甲车速乙车速) 火车相遇:相遇时间(甲车长乙车长距离)(甲车速乙车速)【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?解 火车3分钟所行的路程,就是桥长与火车车身长度的和。(1)火车3分钟行多少米? 90032700(米)(2)这列火车长多少米? 27002400300(米)列成综合算式

31、 90032400300(米)答:这列火车长300米。例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?解 火车过桥所用的时间是2分5秒125秒,所走的路程是(8125)米,这段路程就是(200米桥长),所以,桥长为8125200800(米)答:大桥的长度是800米。例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?解 从追上到追过,快车比慢车要多行(225140)米,而快车比慢车每秒多行(2217)米,因此,所求的时间为(225140)(2217)73(秒)答

32、:需要73秒。例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?解 如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。150(223)6(秒)答:火车从工人身旁驶过需要6秒钟。例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?解 车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(8858)秒的时间内行驶了(20001250)米的路程,因此,火车的车速为每秒(20001250)(8858)2

33、5(米)进而可知,车长和桥长的和为(2558)米,因此,车长为 25581250200(米)答:这列火车的车速是每秒25米,车身长200米。13 时钟问题【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。【数量关系】 分针的速度是时针的12倍, 二者的速度差为11/12。 通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“追及问题”后可以直接利用公式。例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟

34、走5/601/12格。每分钟分针比时针多走(11/12)11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为 20(11/12) 22(分)答:再经过22分钟时针正好与分针重合。例2 四点和五点之间,时针和分针在什么时候成直角?解 钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(54)格,如果分针在时针后与它成直角,那么分针就要比时针多走 (5415)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5415)格。再根据1分钟分针比时针多走(11/12)格就可以求出二针成

35、直角的时间。 (5415)(11/12) 6(分)(5415)(11/12) 38(分)答:4点06分及4点38分时两针成直角。例3 六点与七点之间什么时候时针与分针重合?解 六点整的时候,分针在时针后(56)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。(56)(11/12) 33(分)答:6点33分的时候分针与时针重合。14 盈亏问题【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数(盈亏)分配

36、差如果两次都盈或都亏,则有:参加分配总人数(大盈小盈)分配差参加分配总人数(大亏小亏)分配差【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?解 按照“参加分配的总人数(盈亏)分配差”的数量关系:(1)有小朋友多少人? (111)(43)12(人)(2)有多少个苹果? 3121147(个)答:有小朋友12人,有47个苹果。例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?解 题中原定完成任务的天数,就相当于“参加分

37、配的总人数”,按照“参加分配的总人数(大亏小亏)分配差”的数量关系,可以得知原定完成任务的天数为 (26083004)(300260)22(天)这条路全长为 300(224)7800(米)答:这条路全长7800米。例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?解 本题中的车辆数就相当于“参加分配的总人数”,于是就有(1)有多少车? (300)(4540)6(辆)(2)有多少人? 40630270(人)答:有6 辆车,有270人。15 工程问题【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常

38、不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。工作量工作效率工作时间 工作时间工作量工作效率工作时间总工作量(甲工作效率乙工作效率)【解题思路和方法】 变通后可以利用上述数量关系的公式。例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?解 题中的“一项工程”是工作总量,由于没

39、有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/101/15)。由此可以列出算式: 1(1/101/15)11/66(天)答:两队合做需要6天完成。例2 一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/61/8),二人合做时每小时完成(1/61/8)。因为二人合做需要1(1/61/8)小时,这

40、个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?241(1/61/8)7(个)(2)这批零件共有多少个? 7(1/61/8)168(个)答:这批零件共有168个。解二 上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为 1/61/843由此可知,甲比乙多完成总工作量的 43 / 43 1/7所以,这批零件共有 241/7168(个)例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解 必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我

41、们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是60125 60106 60154 因此余下的工作量由乙丙合做还需要 (6052)(64)5(小时)答:还需要5小时才能完成。 也可以用(1-1/12*2)/(1/10+1/15)例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?解 注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的

42、流量就是工作效率。要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(145),2个进水管15小时注水量为(1215),从而可知每小时的排水量为 (1215145)(155)1即一个排水管与每个进水管的工作效率相同。由此可知一池水的总工作量为 1451515 又因为在2小时内,每个进水管的注水量为 12, 所以,2小时内注满一池水 至少需要多少个进水管? (1512)(12)8.59(个) 答:至少需要

43、9个进水管。16 正反比例问题【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。【解题思路和方法】 解决这类问题的重要

44、方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。正反比例问题与前面讲过的倍比问题基本类似。例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?解 由条件知,公路总长不变。原已修长度总长度1(13)14312现已修长度总长度1(12)13412比较以上两式可知,把总长度当作12份,则300米相当于(43)份,从而知公路总长为 300(43)123600(米)答: 这条公路总长3600米。例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?解 做题效率一定,做题数量与做题时间成正比例关系设91分钟可以做X应用题

45、 则有 28491X28X914 X91428 X13答:91分钟可以做13道应用题。例3 孙亮看十万个为什么这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?解 书的页数一定,每天看的页数与需要的天数成反比例关系设X天可以看完,就有 2436X15 36X2415 X10答:10天就可以看完。例4 一个大矩形被分成六个小矩形,其中四个小矩形的面积如图所示,求大矩形的面积。A 252036B16解 由面积宽长可知,当长一定时,面积与宽成正比,所以每一上下两个小矩形面积之比就等于它们的宽的正比。又因为第一行三个小矩形的宽相等,第二行三个小矩形的宽也相等。因此,A362016 2

46、5B2016 解这两个比例,得 A45 B20所以,大矩形面积为 453625202016162答:大矩形的面积是162.17 按比例分配问题【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。 总份数比的前后项之和【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计

47、算方法,分别求出各部分量的值。例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?解 总份数为 474845140一班植树 56047/140188(棵)二班植树 56048/140192(棵)三班植树 56045/140180(棵) 答:一、二、三班分别植树188棵、192棵、180棵。例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是345。三条边的长各是多少厘米?解 34512 603/1215(厘米) 604/1220(厘米)605/1225(厘米)答:三角形三条边的长分别是15厘米、20厘米、25厘米。例3

48、 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。解 如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到 1/21/31/996296217 179/179 176/176 172/172答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。例4 某工厂第一、二、三车间人数之比为81221,第一车间比第二车间少80人,三个车间共多少人?人 数80人一共多少人?对应的份数12881221解 80(128)(81221)820(人

49、)答:三个车间一共820人。18 百分数问题【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数比较量标准量 标准量比较量百分数【解题思路和方法】 一般有三种基本类型:(1) 求一个数是另一个数的百分之几;(2) 已知一个数,求它

50、的百分之几是多少;(3) 已知一个数的百分之几是多少,求这个数。例1 仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?解 (1)用去的占 720(7206480)10%(2)剩下的占 6480(7206480)90%答:用去了10%,剩下90%。例2 红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几? 解 本题中女职工人数为标准量,男职工比女职工少的人数是比较量 所以 (525420)5250.220% 或者 14205250.220%答:男职工人数比女职工少20%。例3 红旗化工厂有男职工420人,女职工525人,女职工比男职工

51、人数多百分之几? 解 本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此 (525420)4200.2525% 或者 52542010.2525%答:女职工人数比男职工多25%。例4 红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?解 (1)男职工占 420(420525)0.44444.4%(2)女职工占 525(420525)0.55655.6%答:男职工占全厂职工总数的44.4%,女职工占55.6%。例5 百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有:增长率增长数原来基数100%合格率合格产品数产品总数100%出勤率实

52、际出勤人数应出勤人数100%出勤率实际出勤天数应出勤天数100%缺席率缺席人数实有总人数100%发芽率发芽种子数试验种子总数100%成活率成活棵数种植总棵数100%出粉率面粉重量小麦重量100%出油率油的重量油料重量100%废品率废品数量全部产品数量100%命中率命中次数总次数100%烘干率烘干后重量烘前重量100%及格率及格人数参加考试人数100%19 “牛吃草”问题【含义】 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。【数量关系】 草总量原有草量草每天生长量天数【解题思路和方法】 解这类题的关键是求出草每天的生长量。例1 一块草地,

53、10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?解 草是均匀生长的,所以,草总量原有草量草每天生长量天数。求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛? 设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(11020);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以 11020原有草量20天内生长量同理 11510原有草量10天内生长量由此可知 (2010)天内草的生长量为 110201151050因此,草每天的生长量为 50(2

54、010)5(2)求原有草量原有草量10天内总草量10内生长量11510510100(3)求5 天内草总量5 天内草总量原有草量5天内生长量10055125(4)求多少头牛5 天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。因此5天吃完草需要牛的头数 125525(头)答:需要5头牛5天可以把草吃完。例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?解 这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1

55、,按以下步骤计算:(1)求每小时进水量因为,3小时内的总水量1123原有水量3小时进水量10小时内的总水量1510原有水量10小时进水量所以,(103)小时内的进水量为 1510112314因此,每小时的进水量为 14(103)2(2)求淘水前原有水量原有水量11233小时进水量362330(3)求17人几小时淘完17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(172),所以17人淘完水的时间是 30(172)2(小时)答:17人2小时可以淘完水。20 鸡兔同笼问题【含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫

56、做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有 兔数(实际脚数2鸡兔总数)(42)假设全都是兔,则有 鸡数(4鸡兔总数实际脚数)(42)第二鸡兔同笼问题:假设全都是鸡,则有兔数(2鸡兔总数鸡与兔脚之差)(42)假设全都是兔,则有鸡数(4鸡兔总数鸡与兔脚之差)(42)【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。例1 长毛兔子芦花鸡,鸡兔圈在

57、一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?解 假设35只全为兔,则 鸡数(43594)(42)23(只)兔数352312(只)也可以先假设35只全为鸡,则 兔数(94235)(42)12(只)鸡数351223(只)答:有鸡23只,有兔12只。例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解 此题实际上是改头换面的“鸡兔同笼”问题。“每亩菠菜施肥(12)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(35)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。假设16亩全

58、都是菠菜,则有白菜亩数(91216)(3512)10(亩)答:白菜地有10亩。例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。问作业本和日记本各买了多少本?解 此题可以变通为“鸡兔同笼”问题。假设45本全都是日记本,则有作业本数(690.7045)(3.200.70)15(本)日记本数451530(本)答:作业本有15本,日记本有30本。例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?解 假设100只全都是鸡,则有兔数(210080)(42)20(只)鸡数1002080(只)答:有鸡80只,有兔20只。例

59、5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?解 假设全为大和尚,则共吃馍(3100)个,比实际多吃(3100100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(31/3)个。因此,共有小和尚 (3100100)(31/3)75(人)共有大和尚 1007525(人)答:共有大和尚25人,有小和尚75人。21 方阵问题【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。【数量关系】 (1)方阵每边人数与四周人

60、数的关系: 四周人数(每边人数1)4 每边人数四周人数41(2)方阵总人数的求法:实心方阵:总人数每边人数每边人数空心方阵:总人数(外边人数)(内边人数) 内边人数外边人数层数2(3)若将空心方阵分成四个相等的矩形计算,则: 总人数(每边人数层数)层数4【解题思路和方法】 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解 2222484(人) 答:参加体操表演的同学一共有484人。例2 有一个3层中空方阵,最外边一层有10人,求全方阵

61、的人数。解 10*10(1032)*(1032)84(人) 答:全方阵84人。例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?解 (1)中空方阵外层每边人数524114(人) (2)中空方阵内层每边人数28416(人) (3)中空方阵的总人数141466160(人)答:这队学生共160人。例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?解 (1)纵横方向各增加一层所需棋子数4913(只) (2)纵横增加一层后正方形每边棋子数(131)27(只) (3)原有棋子数77940(只)答:棋子有40

62、只。例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?解 第一种方法: 1234515(棵)第二种方法: (51)5215(棵)答:这个三角形树林一共有15棵树。22 商品利润问题【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。【数量关系】 利润售价进货价 利润率(售价进货价)进货价100% 售价进货价(1利润率) 亏损进货价售价 亏损率(进货价售价)进货价100%【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。例1 某商品的平均价格在一月份上调了10%,到

63、二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?解 设这种商品的原价为1,则一月份售价为(110%),二月份的售价为(110%)(110%),所以二月份售价比原价下降了1(110%)(110%)1%答:二月份比原价下降了1%。例2 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?解 要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(5280%)元;又因为原价是按期望盈利30%定的,所以成本为 5280%(130%)50(元)可以看出

64、该店是盈利的,盈利率为 (5250)504%答:该店是盈利的,盈利率是4%。例3 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?解 问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25(140%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即0.25120040%86%0.25120040%80%7.20(元)剩下的作业本每册盈利 7.

65、201200(180%)0.03(元)又可知 (0.250.03)0.25(140%)80%答:剩下的作业本是按原定价的八折出售的。例4 某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。解 设乙店的进货价为1,则甲店的进货价为 110%0.9甲店定价为 0.9(130%)1.17乙店定价为 1(120%)1.20由此可得 乙店进货价为 6(1.201.17)200(元)乙店定价为 2001.2240(元)答:乙店的定价是240元。23 存款利率问题【含义】 把钱存入银行是有一定利息的,利息的多少,与

66、本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。【数量关系】 年(月)利率利息本金存款年(月)数100% 利息本金存款年(月)数年(月)利率 本利和本金利息 本金1年(月)利率存款年(月)数【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。解 因为存款期内的总利息是(14881200)元,所以总利率为 (14881200)1200 又因为已知月利率,所以存款月数为 (14881

67、200)12000.8%30(月)答:李大强的存款期是30月即两年半。例2 银行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取出,那么,谁的收益多?多多少元?解 甲的总利息100007.92%210000(17.92%2)8.28%3 1584115848.28%34461.47(元)乙的总利息 100009%54500(元) 45004461.4738.53(元)答:乙的收益较多,乙比甲多38.53元。24 溶液浓度问题【含义】 在生产和生活中,我们经常会遇到溶液浓度

68、问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。【数量关系】 溶液溶剂溶质 浓度溶质溶液100%【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?解 (1)需要加水多少克? 5016%10%5030(克) (2)需要加糖多少克? 50(116%)(130%)5010(克)答:(1)需要加水30克,(2

69、)需要加糖10克。例2 要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?解 假设全用30%的糖水溶液,那么含糖量就会多出 600(30%25%)30(克)这是因为30%的糖水多用了。于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。这样,每“换掉”100克,就会减少糖 100(30%15%)15(克) 所以需要“换掉”30%的溶液(即“换上”15%的溶液) 100(3015)200(克)由此可知,需要15%的溶液200克。需要30%的溶液 600200400(克)答:需要15%的糖水溶液200克,需要30

70、%的糖水400克。例3 甲容器有浓度为12%的盐水500克,乙容器有500克水。把甲中盐水的一半倒入乙中,混合后再把乙中现有盐水的一半倒入甲中,混合后又把甲中的一部分盐水倒入乙中,使甲乙两容器中的盐水同样多。求最后乙中盐水的百分比浓度。解 由条件知,倒了三次后,甲乙两容器中溶液重量相等,各为500克,因此,只要算出乙容器中最后的含盐量,便会知所求的浓度。下面列表推算:甲容器乙容器原 有盐水500盐50012%60水500第一次把甲中一半倒入乙中后盐水5002250盐60230盐水500250750盐30第而次把乙中一半倒入甲中后盐水250375625盐301545盐水7502375盐30215

71、第三次使甲乙中盐水同样多盐水500盐45936盐水500盐45361524由以上推算可知,乙容器中最后盐水的百分比浓度为 245004.8%答:乙容器中最后的百分比浓度是4.8%。25 构图布数问题【含义】 这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。【数量关系】 根据不同题目的要求而定。【解题思路和方法】 通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。例1 十棵树苗子,要栽五行子,每行四棵子,请你想法子。解 符合题目要求的图形应

72、是一个五角星。45210因为五角星的5条边交叉重复,应减去一半。例2 九棵树苗子,要栽十行子,每行三棵子,请你想法子。解 符合题目要求的图形是两个倒立交叉的等腰三角形,一个三角形的顶点在另一个三角形底边的中线上。例3 九棵树苗子,要栽三行子,每行四棵子,请你想法子。解 符合题目要求的图形是一个三角形,每边栽4棵树,三个顶点上重复应减去,正好9棵。 4339例4 把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,每个数只填一处,且每条线上三个数的和都等于12。解 共有五种写法,即 12147 12156 1223712246 12345在这五个算式中,4出现三次

73、,其余的1、2、3、5、6、7各出现两次,因此,4应位于三条线的交点处,其余数都位于两条线的交点处。26 幻方问题【含义】 把nn个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。 三级幻方的幻和45315 五级幻方的幻和325565【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。例1 把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的

74、和相等。解 幻和的3倍正好等于这九个数的和,所以幻和为(123456789)345315九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次。看来,用到四次的“中心数”地位重要,宜优先考虑。设“中心数”为,因为出现在四条线上,而每条线上三个数之和等于15,所以 (123456789)(41)154即 45360 所以 5接着用奇偶分析法寻找其余四个偶数的位置,它们276951438分别在四个角,再确定其余四个奇数的位置,它们分别在中行、中列,进一步尝试,容易得到正确

75、的结果。例2 把2,3,4,5,6,7,8,9,10这九个数填到九个方格中,使每行、每列、以及对角线上的各数之和都相等。解 只有三行,三行用完了所给的9个数,所以每行三数之和为(2345678910)3189274685103假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:最大数是10:1810621053最大数是9: 18972963954最大数是8: 18873864最大数是7: 18765 刚好写成8个算式。首先确定正中间方格的数。第二横行、第二竖行、两个斜行都用到正中间方格的数,共用了四次。观察上述8个算式,只有6被用

76、了4次,所以正中间方格中应填6。然后确定四个角的数。四个角的数都用了三次,而上述8个算式中只有9、7、5、3被用了三次,所以9、7、5、3应填在四个角上。但还应兼顾两条对角线上三个数的和都为18。最后确定其它方格中的数。如图。27 抽屉原则问题【含义】 把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个抽屉中放了2只或2只以上的苹果。这就是数学中的抽屉原则问题。【数量关系】 基本的抽屉原则是:如果把n1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(

77、元素)。抽屉原则可以推广为:如果有m个抽屉,有kmr(0rm)个元素那么至少有一个抽屉中要放(k1)个或更多的元素。通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k1)个或更多的元素。【解题思路和方法】 (1)改造抽屉,指出元素; (2)把元素放入(或取出)抽屉; (3)说明理由,得出结论。例1 育才小学有367个2000年出生的学生,那么其中至少有几个学生的生日是同一天的?解 由于2000年是润年,全年共有366天,可以看作366个“抽屉”,把367个1999年出生的学生看作367个“元素”。367个“元素”放进366个“抽屉”中,至少有一个“抽屉”中放有2个或更多

78、的“元素”。 这说明至少有2个学生的生日是同一天的。例2 据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?解 人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645201825 根据抽屉原则的推广规律,可知k1183答:陕西省至少有183人的头发根数一样多。例3 一个袋子里有一些球,这些球仅只有颜色不同。其中红球10个,白球9个,黄球8个,蓝球2个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?解 把四种颜

79、色的球的总数(3332)11 看作11个“抽屉”,那么,至少要取(111)个球才能保证至少有4个球的颜色相同。答;他至少要取12个球才能保证至少有4个球的颜色相同。28 公约公倍问题【含义】 需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。【数量关系】 绝大多数要用最大公约数、最小公倍数来解答。【解题思路和方法】 先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。例1 一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?解 硬纸板的长和宽的最大公约数就是所求的边长。6

80、0和56的最大公约数是4。 答:正方形的边长是4厘米。例2 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?解 要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。 36、30、48的最小公倍数是720。答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。例3 一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,

81、至少要植多少棵树?解 相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。所以,至少应植树 (60729684)1226(棵)答:至少要植26棵树。例4 一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。解 如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为6031181(个)答:棋子的总数是181个。29 最值问题【含义】

82、 科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。【数量关系】 一般是求最大值或最小值。【解题思路和方法】 按照题目的要求,求出最大值或最小值。例1 在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?解 先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。答:最少需要9分钟。例2 在一条公路上有五个

83、卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?解 我们采用尝试比较的方法来解答。集中到1号场总费用为 12001014004018000(元)集中到2号场总费用为 11001014003013000(元)集中到3号场总费用为 11002012001014001012000(元)集中到4号场总费用为 11003012002014001011000(元)集中到5号场总费用为 11004012003010000(元)经过比较,显然,集

84、中到5号煤场费用最少。答:集中到5号煤场费用最少。重庆武汉北京800400上海500300例3 北京和上海同时制成计算机若干台,北京可调运外地10台,上海可调运外地4台。现决定给重庆调运8台,给武汉调运6台,若每台运费如右表,问如何调运才使运费最省?解 北京调运到重庆的运费最高,因此,北京往重庆应尽量少调运。这样,把上海的4台全都调往重庆,再从北京调往重庆4台,调往武汉6台,运费就会最少,其数额为5004800440067600(元)答:上海调往重庆4台,北京调往武汉6台,调往重庆4台,这样运费最少。30 列方程问题【含义】 把应用题中的未知数用字母代替,根据等量关系列出含有未知数的等式方程,

85、通过解这个方程而得到应用题的答案,这个过程,就叫做列方程解应用题。【数量关系】 方程的等号两边数量相等。【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。(2)设:把应用题中的未知数设为。(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。(4)解;求出所列方程的解。(5)验:检验方程的解是否正确,是否符合题意。(6)答:回答题目所问,也就是写出答问的话。同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在后面写上单位名称,在方程中已知数和未

86、知数都不带单位名称,求出的值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?解 第一种方法:设乙班有人,则甲班有(90)人。找等量关系:甲班人数乙班人数230人。列方程: 90230解方程得 40 从而知 9050第二种方法:设乙班有人,则甲班有(230)人。列方程 (230)90解方程得 40 从而得知 23050答:甲班有50人,乙班有40人。例2 鸡兔35只,共有94只脚,问有多少兔?多少鸡?解 第一种方法:设兔为只,则鸡为(35)只,兔的脚数为4个,鸡的脚数为2(35)个。根据等量关系“兔脚

87、数鸡脚数94”可列出方程 42(35)94 解方程得 12 则3523第二种方法:可按“鸡兔同笼”问题来解答。假设全都是鸡,则有 兔数(实际脚数2鸡兔总数)(42)所以 兔数(94235)(42)12(只) 鸡数351223(只)答:鸡是23只,兔是12只。例3 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?解 第一种方法:求出甲乙两车一次共可运的袋数,再减去甲车一次运的袋数,即是所求。 9404125110(袋)第二种方法:从总量里减去甲汽车4次运的袋数,即为乙汽车共运的袋数,再除以4,即是所求。 (9401254)4110(袋)第三种方法:设乙汽

88、车每次运袋,可列出方程 9404125解方程得 110第四种方法:设乙汽车每次运袋,依题意得(125)4940 解方程得 110答:乙汽车每次运110袋。消去法在一些应用题中,有时会出现两个或两个以上并列的未知数,我们可以根据数据特点,设法消去一个或两个未知数,只保留其中的一个未知数,在求得这个未知数后,再求出其它的未知数。这种解题思路和方法就是消去法。例1学校买了4张办公桌和1把椅子,共用去510元,后又买来6张办公桌和1把椅子共用去750元。求每张办公桌和每把椅子各多少元? 分析与解根据已知条件,列出关系式:4张桌子的价钱+1把椅子的价钱=510元-6张桌子的价钱+1把椅子的价钱=750元-观察比较两个等式,式比式多买了(6-4)张桌子,就多用了(750-510)元,从而可以求出每张办公桌为(750-510)(6-4)=120元,每把椅子为510-1204=30元

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1