1、京改版八年级数学上册第十章分式章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算的结果是()ABCD2、若数a与其倒数相等,则的值是()ABCD03、将的分母化为整数,得()ABCD4、方程的解
2、为()Ax=1Bx=0Cx=Dx=15、在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A千米B千米C千米D无法确定6、若分式的值为零,则的值为()A-3B-1C3D7、解分式方程时,去分母化为一元一次方程,正确的是()Ax+23Bx23Cx23(2x1)Dx+23(2x1)8、化简(a1)(1)a的结果是()Aa2B1Ca2D19、根据分式的基本性质,分式可变形为()ABCD10、化简的结果为,则()A4B3C2D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解为_2、观察下列各式:
3、, 根据其中的规律可得_(用含n的式子表示)3、已知ab4,a+b3,则_4、若方程的解与方程的解相同,则_5、已知分式化简后的结果是一个整式,则常数=_三、解答题(5小题,每小题10分,共计50分)1、某工厂计划在规定时间内生产24000个零件由于销售商突然急需供货,工厂实际工作效率比原计划提高了50%,并提前5天完成这批零件的生产任务求该工厂原计划每天加工这种零件多少个?2、先化简,再求值:-,其中a=(3-)0+-.3、班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上
4、大巴后继续前行,结果比队伍提前15分钟到达基地问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?4、解下列方程(组):(1);(2)5、阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当mn时,m2nmn2可是我见到有这样一个神奇的等式:()2()2(其中a,b为任意实数,且b0)你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立;当a2,b3时,等式_(填写“成立”或“不成立”);当a3,b5
5、时,等式_(填写“成立”或“不成立”)(2)对于任意实数a,b(b0),通过计算说明()2()2是否成立-参考答案-一、单选题1、D【解析】【分析】先求出两个分式的乘积,然后根据分式的性质:分子和分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可【详解】解: ,故选D【考点】本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解2、A【解析】【分析】先将分子分母中能分解因式的分别分解因式,再根据分式的除法运算法则化简原式,最后根据已知条件可得a1,进而代入计算即可求得答案【详解】解:原式,数a与其倒数相等,a1,原式,故选:A【考点】本题考查了分式的除法运算
6、以及倒数的意义,熟练掌握分式的运算法则是解决本题的关键3、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键4、D【解析】【详解】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验5、C【解析】【详解】平均速度=总路程总时间,题中没有单程,可设单程为1,那么总路程为2依题意得:2()=2=千米故选C【考点】解决问题的
7、关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系当题中没有一些必须的量时,为了简便,可设其为16、A【解析】【分析】根据分式的值为零的条件即可求出答案【详解】解:由题意可知:解得:x=-3,故选:A【考点】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件7、C【解析】【分析】最简公分母是2x1,方程两边都乘以(2x1),即可把分式方程便可转化成一元一次方程【详解】方程两边都乘以(2x1),得x23(2x1),故选C【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根8、A【解析】【分析】根据分式的混合运算顺序和
8、运算法则计算可得【详解】原式=(a1)a=(a1)a=a2,故选A【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则9、A【解析】【分析】根据分式的基本性质,改变分子、分母、分式本身三者中两个的符号,原分式的值不变,即可判断【详解】,故选:A【考点】本题考查了分式的基本性质,注意符号变化是解决问题的关键10、A【解析】【分析】根据分式的运算法则即可求出答案【详解】解:依题意得:,故选:【考点】本题考查分式的运算,解题的关键是熟练运用分式的运算法则二、填空题1、【解析】【分析】先去分母,然后移项合并,最后进行检验即可【详解】解:去分母得:移项合并得:检验,将代入,所
9、以是原分式方程的解故答案为:【考点】本题考查了解分式方程解题的关键在于正确的去分母2、【解析】【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解【详解】解:由分析得,故答案为:【考点】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案3、【解析】【分析】先通分:,然后再代入数据即可求解【详解】解:由题意可知:,故答案为:【考点】本题考查了分式的加减运算及求值,属
10、于基础题,计算过程中细心即可4、【解析】【分析】求出第二个分式方程的解,代入第一个方程中计算即可求出a的值【详解】解:方程去分母得:3x6,解得:x2,经检验x2是分式方程的解,根据题意将x2代入第一个方程得:解得:,经检验是原分式方程的解,则故答案为:【考点】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值5、【解析】【分析】依题意可知,分式化简后是一个整式,说明分式可以由公约数“x+1”,即分式的分子部分可以化成的形式,将这个分子展开与原式中分子部分联立,求取常数的值即可.【详解】分式化简后的结果是一个整式分式的分子部分可以化为:解得:,故答案为:【考点】本题考查了分式
11、的变形求字母的值,解决本题的关键是正确的将分式的分子部分进行变形,使得分子部分含有(x+1).三、解答题1、该工厂原计划每天加工这种零件1600个【解析】【分析】设该工厂原计划每天加工这种零件x个,则实际每天加工这种零件(1+50%)x个,根据工作时间=工作总量工作效率结合实际比原计划少用5天完成这批零件的生产任务,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】解:设该工厂原计划每天加工这种零件x个,则实际每天加工这种零件(1+50%)x个,依题意,得:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则解得:x1600,经检验,x1600是原方程的解,且符合题
12、意答:该工厂原计划每天加工这种零件1600个【考点】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键2、,;.【解析】【分析】根据分式的运算法则及混合运算顺序先把分式化为最简分式,再求得a的值,代入即可求解.【详解】解:原式=-=-=-=.a=(3-)0+-=1+3-1=3,原式=-.【考点】本题考查了分式的化简求值,把分式化为最简分式及正确求得a的值是解决问题的关键.3、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里【解析】【分析】(1)根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时
13、间+小车早到的时间”列分式方程求解可得;(2)根据“从学校到相遇点小车行驶所用时间+小车晚出发时间=大巴车从学校到相遇点所用时间”列方程求解可得【详解】(1)设大巴的平均速度为x公里/时,则小车的平均速度为1.5x公里/时,根据题意,得:=+解得:x=40经检验:x=40是原方程的解,1.5x=60公里/时答:大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)设苏老师赶上大巴的地点到基地的路程有y公里,根据题意,得:+=解得:y=30答:苏老师追上大巴的地点到基地的路程有30公里【考点】本题考查了分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列
14、出方程4、(1);(2)无解【解析】【分析】(1)用加减消元法解方程组即可;(2)先去分母,把分式方程转化为整式方程,求出方程的解,再进行检验即可【详解】解:(1)+,得6x=18,x=3-,得4y=8,y=2所以原方程组的解为;(2),去分母,得6=3(1+x),去括号,得6=3+3x,移项合并,得3x=3,系数化为1,得x=1经检验,x=1是原方程的增根所以原方程无解【考点】本题考查了解二元一次方程组和解分式方程,能把二元一次方程组转化成一元一次方程是解二元一次方程组的关键,能把分式方程转化成整式方程是解分式方程的关键5、(1)成立;成立;(2)成立【解析】【分析】(1)把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;(2)分别把等式两边通分并化简,结果相等则成立,否则不成立【详解】(1)成立;成立(2)左边()2,右边()2所以等式()2()2成立【考点】本题考查了求代数式的值,分式加法运算,体现了由特殊到一般的数学思想,掌握分式的加法运算法则是关键