1、八年级数学上册第十一章实数和二次根式难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列实数中的无理数是()ABCD2、估计的值应在()A1和2之间B2和3之间C3和4之间D4和5之间3、式子在实
2、数范围内有意义,则的取值范围是()ABCD4、下列实数中,为有理数的是()ABC1D5、若一个正数的两个平方根分别为2a与3a6,则这个正数为()A2B4C6D366、下列运算正确的是().ABCD7、下列各数中,与1最接近的是()A0.4B0.6C0.8D18、四个数0,1,中,无理数的是()AB1CD09、下列二次根式中,最简二次根式是()ABCD10、计算=()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算的结果是_2、阅读材料:若ab=N,则b=logaN,称b为以a为底N的对数,例如23=8,则log28=log223=3根据材料填空:log39
3、=_3、计算:=_4、已知为实数,规定运算:,按上述方法计算:当时,的值等于_5、观察下面的变化规律:,根据上面的规律计算:_三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2)2、计算(1)(2)3、计算:(1);(2).4、计算(1) ;(2)5、对于任意实数、,定义关于“”的一种运算如下:.例如.(1)求的值;(2)若,且,求的值.-参考答案-一、单选题1、C【解析】【详解】分析: 分别根据无理数、有理数的定义即可判定选择项.详解: =1.1, =-2, 是有理数,是无理数,故选C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理
4、数如,0.8080080008(每两个8之间依次多1个0)等形式.2、B【解析】【详解】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】=,=,而,45,所以23,所以估计的值应在2和3之间,故选B.【考点】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.3、D【解析】【分析】由二次根式有意义的条件列不等式可得答案【详解】解:由式子在实数范围内有意义, 故选D【考点】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键4、C【解析】【分析】根据有理数是有限小数或无限循环小数可判断C,无
5、理数是无限不循环小数,可判断A、B、D即可【详解】解:,是无理数,1是有理数故选C【考点】本题考查了实数,正确区分有理数与无理数是解题的关键5、D【解析】【分析】根据平方根的定义可得一个关于的一元一次方程,解方程求出的值,再计算有理数的乘方即可得【详解】解:由题意得:,解得,则这个正数为,故选:D【考点】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键6、C【解析】【分析】根据二次根式的性质和法则逐一计算即可判断【详解】A. 是同类二次根式,不能合并,此选项错误;B. =18,此选项错误;C. ,此选项正确;D.,此选项错误;故选C【考点】本题考查二次根式的混合运算,熟练掌
6、握计算法则是解题关键.7、C【解析】【分析】先估算接近的数,再减去1即可【详解】1.51.740.510.74故选:C【考点】本题考查无理数的估值,理解算术平方根的概念是关键,了解二分法是难点8、A【解析】【分析】分别根据无理数、有理数的定义即可判定选择项【详解】0,1,是有理数,是无理数,故选A【考点】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式9、A【解析】【分析】根据最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式,可得答案【详解】解:A. ,是最简二次根式,故正确;B.
7、,不是最简二次根式,故错误;C. ,不是最简二次根式,故错误;D. ,不是最简二次根式,故错误.故选A.【考点】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式10、C【解析】【分析】根据二次根式的混合运算和根式的性质即可解题.【详解】解: ,故选C.【考点】本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.二、填空题1、【解析】【分析】根据二次根式的加减运算和零指数幂的运算法则进行计算即可【详解】解:=,故答案为:【考点】本题考查了二次根式的加减运算和零指数幂,掌握运算法则是解题关键2、2【解析】【详解】分析:由于32=9,利用对数的定义计算详
8、解:32=9,log39=log332=2故答案为2点睛:属于定义新运算题目,读懂材料中对数的定义是解题的关键.3、【解析】【分析】先化简二次根式,再合并即可.【详解】原式=.故答案为:【考点】本题考查二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待4、【解析】【分析】将,代入进行计算,可知数列3个为一次循环,按此规律即可进行求解【详解】解:由题意可知,时,其规律是3个为一次循环,20223=674,故答案为:【考点】本题考查了实数的运算,规律型:数字变化类,把代入进行计算,
9、找到规律是解题的关键5、【解析】【分析】本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题【详解】由题干信息可抽象出一般规律:(均为奇数,且)故故答案:【考点】本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解三、解答题1、(1);(2)【解析】【分析】(1)根据二次根式的性质,求一个数的立方根,化简绝对值,进而根据实数的性质进行计算即可;(2)根据平方差公式,二次根式的除法运算进行计算即可【详解】(1)解:原式, (2)解:原式,【考点】本题考查了实数的混合运算,二次根式的除法运算,掌握二次根式的性质以及二次根式的运算法则是
10、解题的关键2、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法【详解】解:(1)=;(2)=0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则3、 (1)(2)【解析】【分析】(1)先把各二次根式化为最简二次根式得到,然后合并同类二次根式即可;(2)先把各二次根式化为最简二次根式和根据二次根式的乘除法运算得到,然后合并(1)原式;(2)原式【考点】本题考查二次根式的混合运算,解题的关键是掌握二次根式混合运算的相关法则4、 (1);(2)【解析】【分析】(1)首先化简二次根式,之后进行实数的加减运算即可;(2)首先化简二次根式、计算零次幂,去绝对值,最后进行实数加减运算即可(1)解:原式;(2)解:原式【考点】本题主要考查实数的运算,掌握二次根式的化简、零次幂运算、绝对值的性质是解题的关键5、(1);(2).【解析】【详解】解:(1);(2)由题意得