1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若m,n是方程x2x2 0220的两个根,则代数式(m22m2 022
2、)(n22n2 022)的值为()A2 023B2 022C2 021D2 0202、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A9人B10人C11人D12人3、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边形的面积为,则与的函数图象可能是()ABCD4、已知x1,x2是一元二次方程2x23x5的两个实数根,下列结论错误的是()A23x15B(x1x2)(2x12x23)0Cx1x2Dx1x25、已知二次函数yax2bxc,其中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc0二、多选题(5小
3、题,每小题4分,共计20分)1、关于的方程有两个不相等的实数根,则下列结论一定正确的是()A,BCD当时,2、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是()x320135y708957A抛物线的顶点坐标为(1,9);B与y轴的交点坐标为(0,8);C与x轴的交点坐标为(2,0)和(2,0); 线 封 密 内 号学级年名姓 线 封 密 外 D当x=1时,对应的函数值y为53、如图所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m2的矩形临时仓库,仓库一边靠墙,另三边用总长为76米的栅栏围成,若设栅栏AB的长为xm,则下列各方程中,不符合题意的是()Ax(76x)67
4、2Bx(762x)672Cx(762x)672Dx(76x)6724、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是()AB方程有两个相等的实根CD点P到直线AB的最大距离5、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是()组,进行轴对称变换的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、二次函数yax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_
5、2、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_3、如果抛物线y(m1)x2有最低点,那么m的取值范围为_4、已知二次函数y(xm)2m21,且(1)当m1时,函数y有最大值_(2)当函数值y恒不大于4时,实数m的范围为_5、如果关于的一元二次方程有实数根,那么的取值范围是_四、解答题(5小题,每小题8分,共计40分)1、一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销
6、售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?2、端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗市场 线 封 密 内 号学级年名姓 线 封 密 外 上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元表示该商家每天销售猪肉粽的利润(单位:元),
7、求y关于x的函数解析式并求最大利润3、红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件其中月销售单价不低于成本设月销售单价为x(单位:元/件),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值4、如图,已知正方形点在边上,以为边在左侧作正方形
8、;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由5、关于x的一元二次方程kx2+(k+1)x+0(1)当k取何值时,方程有两个不相等的实数根?(2)若其根的判别式的值为3,求k的值及该方程的根-参考答案-一、单选题1、B【解析】【详解】解:m、n是方程x2-x-2022=0的两个根,m2-m-2022=0,n2-n-2022=0,mn=-2022,m2-m=2022,n2-n=2022,(m22m2 022)(n22n2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(
9、2022-m-2022)(-2022+n+2022)=-mn=2022,故选:B【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键2、C【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解
10、题的关键是根据题中的等量关系列出方程.3、A【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案【详解】解:正方形ABCD边长为4,AE=BF=CG=DHAH=BE=CF=DG,A=B=C=DAEHBFECGFDHGy=44-x(4-x)4=16-8x+2x2=2(x-2)2+8y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意故选:A【考点】本题考查了动点问题
11、的函数图象,正确地写出函数解析式并数形结合分析是解题的关键4、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可【详解】解:x1、x2是一元二次方程2x2-3x=5的两个实数根,故A正确,不符合题意;这里a=2,b=-3,c=-5,故B、C正确,不符合题意,D错误,符合题意故选:D【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,是解题的关键5、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,
12、c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系二、多选题1、BCD【解析】【分析】根据已知条件可知只有当时,选项A才成立;将原式整理为一元二次方程的一般式,根据关于的方程有两个不相等的实数根运用根的判别式可判断B选项;运用根于系数的关系可判断选项C;运用求根公式可判断选项D【详解】解:整理为,A、当时,的解为,故选项A不符合题意;B、关于的方程有两个不相等的实数根,即,解
13、得:;故选项B符合题意;C、根据根于系数的关系可得:,选项C符合题意;D、当时,当时,故选项D符合题意;故选:BCD【点睛】本题主要考查一元二次方程根的判别式,根与系数的关系,一元二次方程的解等知识点,熟知根的判别式以及根与系数的关系是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 2、ABD【解析】【分析】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=5时,都是y=7,由抛物线的对称性可知:抛物线的对称轴为直线x=,根据对称轴和图表可得到顶点坐标,抛物线与y轴的交点坐标,抛物线与x轴的另一个交点坐标以及x=1时,对应的函数值,判断即可【详解】
14、由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=5时,都是y=7,由抛物线的对称性可知:抛物线的对称轴为直线x=,抛物线的顶点坐标为(1,-9),A正确,符合题意;由图表可知抛物线与y轴的交点坐标为(0,8),B正确,符合题意;抛物线过点(-2,0),根据抛物线的对称性可知:抛物线与x轴的另一个交点坐标为 (4,0),C错误,不符合题意;由抛物线的对称性可知:当x=-1时,对应的函数值与x=3时相同,对应的函数值y=-5,D正确,符合题意,故答案为:ABD【点睛】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,同时会根据图象得到信息3
15、、BCD【解析】【分析】本题可根据题意分别用x表示BC或AD的长,再根据面积公式列出方程即可【详解】解:设栅栏AB的长为xm,依题意得: ,而矩形面积 ,不符合题意的方程有BCD故选:BCD【点睛】考查一元二次方程的应用,解题的关键是读懂题目,找到题目中的等量关系,列方程即可4、BCD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断【详解】解:由图象可知,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确; 线 封 密 内 号学级年名姓 线 封 密 外 当时,抛物
16、线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)在直线上,则,解得,即,由抛物线的对称轴为得,则,即,又 A(1,3),B(4,0)在抛物线上,则,解得,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,为等腰直角三角形,又直线由直线平移得到,且轴,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD【点睛】本题考查了二次函数的图
17、象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离5、AC【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴据此即可解答【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可
18、得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化;故答案为:A;C【点睛】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系三、填空题1、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标【详解】x=-2,y=-3;x=0时,y=-3,抛物线的对
19、称轴为直线x=-1,抛物线与x轴的一个交点坐标为(-3,0),抛物线与x轴的一个交点坐标为(1,0)故答案为(1,0)【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了二次函数的性质2、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键
20、是通过图形找到对应关系量,根据等量关系式列方程.3、m1【解析】【分析】直接利用二次函数的性质得出m1的取值范围进而得出答案【详解】解:抛物线y=(m1)x2有最低点,m10, 线 封 密 内 号学级年名姓 线 封 密 外 解得:m1故答案为m1【考点】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键4、 2 【解析】【分析】(1)根据顶点式将代入解析式即可求得最大值;(2)根据顶点式求得最大值,根据顶点的位置以及自变量的取值范围,分情况讨论求得最值,进而求得的范围【详解】(1)当m1时,二次函数y(x1)2121,则顶点为则函数有最大值,故答案为:(2)二次函数y(xm)2m21
21、,且对称轴为,顶点坐标为当时,时,函数取得最大值即解得,不符合题意,舍去当,时,函数取得最大值解得 当时,时,函数取得最大值解得综上所述,【考点】本题考查了二次函数的性质,掌握的性质是解题的关键5、【解析】【分析】由一元二次方程根与系数的关键可得: 从而列不等式可得答案【详解】解: 关于的一元二次方程有实数根, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【考点】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键四、解答题1、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】【分析】(1)根据销售单价每降低1元,平均每天可多售出
22、2件,可得若降价3元,则平均每天可多售出23=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数每件盈利=每天销售这种商品利润列出方程解答即可【详解】(1)若降价3元,则平均每天销售数量为20+23=26件(2)设每件商品应降价x元时,该商店每天销售利润为1200元根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20要求每件盈利不少于25元,x2=20应舍去,x=10答:每件商品应降价10元时,该商店每天销售利润为1200元【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利
23、=每天销售的利润是解题关键2、(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2),最大利润为1750元【解析】【分析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元,根据某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列方程计算即可;(2)根据题意当时,每天可售100盒,猪肉粽每盒售x元时,每天可售盒,列出二次函数关系式,根据二次函数的性质计算最大值即可【详解】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元则解得:,经检验是方程的解猪肉粽每盒进价40元,豆沙粽每盒进价30元答:猪肉粽每盒进价40元,豆沙粽每盒进价30元(2)由题意得,当时,每天可售100盒当猪肉粽每盒
24、售x元时,每天可售盒每盒的利润为(),配方得: 线 封 密 内 号学级年名姓 线 封 密 外 当时,y取最大值为1750元,最大利润为1750元答:y关于x的函数解析式为,且最大利润为1750元【点睛】本题主要考查分式方程的实际应用以及二次函数的实际应用,根据题意列出相应的函数解析式是解决本题的关键3、(1);(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4【解析】【分析】(1)分和两种情况,根据“月销售单价每涨价1元,月销售量就减少万件”即可得函数关系式,再根据求出的取值范围;(2)在(1)的基础上,根据“月利润(月销售单价成本价)月销售量”建立函数关系式,分别
25、利用一次函数和二次函数的性质求解即可得;(3)设该产品的捐款当月的月销售利润为万元,先根据捐款当月的月销售单价、月销售最大利润可得,再根据“月利润(月销售单价成本价)月销售量”建立函数关系式,然后利用二次函数的性质即可得【详解】解:(1)由题意,当时,当时,解得,综上,;(2)设该产品的月销售利润为万元,当时,由一次函数的性质可知,在内,随的增大而增大,则当时,取得最大值,最大值为;当时,由二次函数的性质可知,当时,取得最大值,最大值为90,因为,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万
26、元),设该产品捐款当月的月销售利润为万元,由题意得:,整理得:,在内,随的增大而增大,则当时,取得最大值,最大值为,因此有,解得【点睛】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键4、(1);理由见解析;(2)与的数量及位置关系都不变;答案见解析 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1),由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点,四边形为平行四边形,又,即【
27、点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质5、(1)且;(2)【解析】【分析】(1)由方程有两个不相等的实数根,得到,列不等式结合,从而可得答案;(2)利用 列方程求解 再把的值代入原方程,解方程即可得到答案【详解】解:(1)该方程的判别式为:,方程有两个不相等的实数根,2k+10,解得,又该方程为一元二次方程,k的取值范围为:且(2)由题意得2k+13解得k1,原方程为: 解得:【点睛】本题考查的是一元二次方程的根的判别式,一元二次方程的解法,掌握一元二次方程根的判别式与公式法解一元二次方程是解题的关键