1、京改版八年级数学上册期末专题测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若有意义,则(n)2的平方根是()ABCD2、下列图形中,是轴对称图形的是()ABCD3、下列说法正确的是A的平方
2、根是B的算术平方根是4C的平方根是D0的平方根和算术平方根都是04、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D855、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限二、多选题(5小题,每小题4分,共计20分)1、下列各式计算不正确的是()ABCD2、如图,在中,的垂直平分线交于点D,交于点E,下列结论正确的是()A平分B的周长等于CD点D是线段的中点3、下列说法正确的是()A商家卖鞋,最关心的是鞋码的众数B365人中必有两人阳历生日相同C要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D随机抽取甲、乙两名同学的5次
3、数学成绩,计算得平均分都是90分,方差分别为,说明甲的成绩较为稳定4、下列说法中不正确的有()A有理数和数轴上的点一一对应B不带根号的数一定是有理数C负数没有立方根D是17的平方根5、下列图形中轴对称图形有()A角B两相交直线C圆D正方形第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,中,点D、点E分别在边、上,连结、,若,且的周长比的周长大6则的周长为_2、比较大小,(填 或 号) _; _3、计算:_4、如图,平分,的延长线交于点,若,则的度数为_5、如图,在平行四边形纸片中,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_四、解答题
4、(5小题,每小题8分,共计40分)1、如图,由ABC中,按如图所示方式折叠,使点B、C重合,折痕为DE,求出AE和AD的长, 2、在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化比如:(1);(2)试试看,将下列各式进行化简:(1);(2);(3)3、如图,点E在BC上,且,(1)求证:;(2)判断AC和BD的位置关系,并说明理由4、观察下列等式:解答下列问题:(1)写出一个无理数,使它与的积为有理数;(2)利用你观察的规律,化简;(3)计算:5、计算:(1)(2)-参考答案-一、单选题1、D【解析】【详解】试题解析:有意
5、义, 解得: 的平方根是: 故选D2、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴3、D【解析】【分析】根据一个正数有两个平方根,且这两个平方根互
6、为相反数及平方根的定义即可判断各选项【详解】解:A、的平方根为,故本选项错误;B、-16没有算术平方根,故本选项错误;C、(-4)2=16,16的平方根是4,故本选项错误;D、0的平方根和算术平方根都是0,故本选项正确故选D【考点】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.4、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,故选B【考点】本题考查垂直的性质,解题关键在于在证明5、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象
7、限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数二、多选题1、BCD【解析】【分析】解答此题根据二次根式的性质进行化简即可【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、 ,故此选项符合题意;D、,故此选项符合题意;故选BCD【考点】本题主要考查了二次根式的化简,解答此题的关键是熟练掌握二次根式的基本运算法则2、ABC【解析】【分析】由在ABC中,ABAC,A36,根据等边对等角与三角形内角和定理,即可求得ABC与C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得ADBD,继而求
8、得ABD的度数,则可知BD平分ABC;可得BCD的周长等于ABBC,又可求得BDC的度数,求得ADBDBC,则可求得答案;注意排除法在解选择题中的应用【详解】解:在ABC中,ABAC,A36,ABCC72,AB的垂直平分线是DE,ADBD,ABDA36,DBCABCABD723636ABD,BD平分ABC,故A正确;BCD的周长为:BCCDBDBCCDADBCACBCAB,故B正确;DBC36,C72,BDC180DBCC72,BDCC,BDBC,ADBDBC,故C正确;BDCD,ADCD,点D不是线段AC的中点,故D错误故选:ABC【考点】此题考查了等腰三角形的性质,线段垂直平分线的性质以及
9、三角形内角和定理等知识此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换3、ACD【解析】【分析】根据众数的定义、必然事件的定义、普查与抽样调查的实际应用、方差越小数据越稳定等知识逐一解答【详解】由题意分析A正确,众数是指一组数据中出现次数最多的数;B错误,365人中必有两人阳历生日相同属于偶然事件,不是必然事件;C采取抽样调查方法合适;D正确,因为甲的方差小于乙的方差,所以甲更稳定一些, 故选:ACD【考点】本题考查方差和平均数,众数的意义,随机事件,抽样调查等基本知识,掌握相关知识是解题关键4、ABC【解析】【分析】根据实数与数轴,有理数与无理数
10、的定义,平方根和立方根的定义进行逐一判断即可【详解】解:A、有理数和数轴上的点不一一对应,数轴上的点也可以表示无理数,故该选项符合题意;B. 不带根号的数不一定是有理数,例如是无理数,故该选项符合题意;C. 负数有立方根,故该选项符合题意;D. 是17的平方根,故此选项不符合题意;故选ABC【考点】本题主要考查了实数与数轴,有理数与无理数的定义,平方根和立方根的定义,解题的关键在于能够熟练掌握相关知识进行求解5、ABCD【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:角;两相交直线;圆;正方形都是轴对称图形故选:ABCD【考点】本题主要
11、考查了轴对称图形的定义,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆三、填空题1、12【解析】【分析】设AC=4a,AB=6a,BC=8a,根据全等三角形的性质得到AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,由题意得方程18a-12a=6,即可求解【详解】解:AC:AB:BC=2:3:4,设AC=4a,AB=6a,BC=8a,ADEBDE,AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,ABC的周长= AC+AB+BC=4a+6a +8a=18a,AEC的周长= AC+AE+
12、EC=4a+x +8a-x=12a,由题意得:18a-12a=6,解得:a=1,AEC的周长为12,故答案为:12【考点】本题考查了全等三角形的性质,解一元一次方程,正确的识别图形是解题的关键2、 【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可【详解】解:,1812,;,;故答案为;【考点】本题主要考查二次根式的大小比较,熟练掌握二次根式的大小比较的方法是解题的关键3、【解析】【分析】先分别化简负整数指数幂和绝对值,然后再计算【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运算法则准确计算是解题关键4、【解析】【分析】如图,连接,延长与交于点利用等腰三
13、角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案【详解】解:如图,连接,延长与交于点 平分, 是的垂直平分线, 故答案为: 【考点】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键5、【解析】【分析】首先根据等边三角形的性质可得A B=AE=E B,B=BEA=60,根据折叠的性质,BCA=BCA,再证明BAC=90,再证得SAEC=SAEB,再求SA BC进而可得答案【详解】解:为等边三角形,A B=AE=E B,B=BEA=60,根据折叠的性质,BCA=BCA,四边形ABCD是平行四边形,AD/BC,AD=BC,AB=CD,BEA=B
14、CB,EAC=BCA,ECA=BCA=30,EAC=30,BAC=90,,BC=8,AC=,BE=AE=EC,SAEC=SAEB= SA BC= 4=,故答案为.【考点】此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30角所对的边等于斜边的一半四、解答题1、 ;【解析】【分析】在中由于,所以根据勾股定理可求出的长,由折叠可知,ED垂直平分BC,E为BC中点,BDCD,根据直角三角形斜边上的中线等于斜边的一半可求出AE的长,设BDCDx,则AD12x在中,由 即可求出x的值,故可得出结论【详解】解:在中由于,由勾股定理得:, BC1
15、2,由折叠可知,ED垂直平分BC,E为BC中点,BDCD,AEBC(直角三角形斜边上的中线等于斜边的一半)设BDCDx,则AD12x在中,即92(12x)2x2,解得,【考点】本题考查的是图形折叠的性质,熟知图形折叠不变性的性质及勾股定理是解答此题的关键2、(1);(2);(3)2【解析】【分析】(1)根据第一个例子可以解答本题;(2)根据第二个例子和平方差公式可以解答本题;(3)根据第二个例子和平方差公式把原式化简,找出式子的规律得出结果即可【详解】解:(1);(2);(3),312【考点】本题考查了二次根式的混合运算、分母有理化和平方差公式,解答本题的关键是明确分母有理化的方法3、 (1)
16、见解析(2),理由见解析【解析】【分析】(1)运用SSS证明即可;(2)由(1)得,根据内错角相等,两直线平行可得结论(1)在和中,(SSS);(2)AC和BD的位置关系是,理由如下:,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解答本题的关键4、(1);(2);(3)【解析】【分析】(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后进行化简,即可得到答案【详解】解:(1),这个无理数为:;(2)=;(3)=【考点】本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键5、(1)9;(2)【解析】【分析】(1)直接利用完全平方公式以及多项式乘多项式运算法则计算得出答案;(2)直接利用二次根式的乘除运算法则计算得出答案【详解】解:(1);(2)【考点】本题考查了二次根式的性质与化简以及整式的混合运算,正确化简二次根式是解题的关键