1、八年级数学上册第十四章整式的乘法与因式分解定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不论x、y为什么实数,代数式的值()A可为任何实数B不小于7C不小于2D可能为负数2、下列运算正确的是()
2、ABCD3、下列各式因式分解正确的是()Aa2+4ab+4b2=(a+4b)2B2a2-4ab+9b2=(2a-3b)2C3a2-12b2=3(a+4b)(a-4b)Da(2a-b)+b(b-2a)=(a-b)(2a-b)4、要使多项式不含的一次项,则与的关系是()A相等B互为相反数C互为倒数D乘积为5、下列由左边到右边的变形,属于因式分解的是()A(a+5)(a5)a225Bmx+my+2m(x+y)+2Cx29(x+3)(x3)D6、已知,则M与N的大小关系为()ABCD7、若,则的值为()A6B5C4D38、下列各式变形中,是因式分解的是()ABCD9、已知,当时,则的值是()ABCD1
3、0、a12可以写成()Aa6+a6Ba2a6Ca6a6Da12a第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_.2、平面直角坐标系中,已知点的坐标为若将点先向下平移个单位,再向左平移个单位后得到点,则_3、化简:_.4、分解因式:_5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、阅读材料并解答下列问题你知道吗?一些代数恒等式可以用平面图形的面积来表示,例如(2ab)(ab)2a23abb2就可以用图甲中的或的面积表示(1)请写出图乙所表示的代数恒等式;(2)画出一个几何图形,使它的面积能表示(ab)(a3b)a24ab3b2;(3)请仿照上
4、述式子另写一个含有a,b的代数恒等式,并画出与之对应的几何图形2、利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:材料一:已知m2-2mn+2n2-8n+16=0,求m、n的值解:m2-2mn+2n2-8n+16=0,(m2-2mn+n2)+(n2-8n+16)=0,(m-n)2+(n-4)2=0,(m-n)20,(n-4)20(m-n)2=0,(n-4)2=0m=n=4材料二:探索代数式x2+4x+2与-x2+2x+3是否存在最大值或最小值?x2+4x+2=(x2+4x+4)-2=(x+2)2-2,(x+2)20,x2+4x+2=(x+2)2-2-2代数
5、式x2+4x+2有最小值-2;-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4,-(x-1)20,-x2+2x+3=-(x-1)2+44代数式-x2+2x+3有最大值4学习方法并完成下列问题:(1)代数式x2-6x+3的最小值为_;(2)如图,在紧靠围墙的空地上,利用围墙及一段长为100米的木栅栏围成一个长方形花圃,为了设计一个尽可能大的花圃,设长方形垂直于围墙的一边长度为x米,则花圃的最大面积是多少?(3)已知ABC的三条边的长度分别为a,b,c,且a2+b2+74=10a+14b,且c为正整数,求ABC周长的最小值3、解答下列问题:(1)已知,求的值;(2)若,求的值4、李明
6、计划三天看完一本书,于是预计一下第一天看的页数,实际上第二天看的页数比第一天看的页数多50页,第三天看的页数比第二天看的页数的还多85页(1)设第一天读书页数为x,请你用代数式表示这本书的页数;(2)若第一天看了150页,求这本书的页数5、分解因式:-参考答案-一、单选题1、C【解析】【分析】要把代数式进行拆分重组凑完全平方式,来判断其值的范围具体如下:【详解】(x22x1)(y24y4)2(x1)2(y2)22,(x1)20,(y2)20,(x1)2(y2)222,2故选:C【考点】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围要求掌握完全平方公式,
7、并会熟练运用2、B【解析】【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可【详解】解:A. ,故本选项不符合题意;B,正确,故本选项符合题意;C,故本选项不合题意;D,故本选项不合题意故选:B【考点】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键3、D【解析】【分析】根据因式分解的定义:把一个多项式写成几个因式的积的形式进行判断即可【详解】a2+4ab+4b2=(a+2b)2,故选项A不正确;2a2-4ab+9b2=(2a-3b)2不是因式分解,B不正确;3a2-12b2=3(a+2b)(a-2b),故选项C不正
8、确;a(2a-b)+b(b-2a)=(a-b)(2a-b)是因式分解,D正确,故选D【考点】本题考查的是因式分解的概念,把一个多项式写成几个因式的积的形式叫做因式分解,在判断一个变形是否是因式分解时,看是否是积的形式即可4、A【解析】【分析】计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q相等.【详解】解:乘积的多项式不含x的一次项p-q=0p=q故选择A.【考点】此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.5、C【解析】【详解】试题解析:把一个多项式分解成几个整式积的形式,叫因式分解,故选C.6、B【解析】【分析】利用完全平方公式把
9、N-M变形,根据偶次方的非负性解答【详解】解:N-M=(m2-3m)-(m-4)=m2-3m-m+4=m2-4m+4=(m-2)20,N-M0,即MN,故选:B【考点】本题考查的是完全平方公式的应用,掌握完全平方公式、偶次方的非负性是解题的关键7、B【解析】【分析】根据同底数幂的乘法法则结合有理数的乘方运算进行计算【详解】解:,且故选:B【考点】本题考查同底数幂的乘法计算,掌握计算法则正确计算是解题关键8、D【解析】【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式
10、的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D【考点】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式9、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口10、C【解析】【分析】分别根据合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可【详解】解:Aa6+a6=2a6,故本选项不合题意;Ba2a6=a8,故本选项不合题意;Ca6a6=a12,故本选项符合题意;Da12a=
11、a11,故本选项不合题意故选:C【考点】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟练掌握幂的运算法则是解答本题的关键二、填空题1、【解析】【详解】分析:先提公因式,再利用平方差公式因式分解即可详解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案为(a-b)(a-2)(a+2)点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键2、3【解析】【分析】先写出点向下平移个单位后的坐标,再写出向左平移个单位后的坐标即可求出m、n,最后代入m+n即可【详解】点向下平移个单位后的坐标为,即再向左平移个单位后的坐标为 ,即
12、m+n=2+1=3故答案为:3【考点】本题考查坐标的平移变换以及代数式求值根据坐标的平移变换求出m、n的值是解答本题的关键3、#【解析】【分析】原式提取公因式,计算即可得到结果【详解】解:原式=(a+1)1+a+a(a+1)+a(a+1)2+a(a+1)2021=(a+1)21+a+a(a+1)+a(a+1)2+a(a+1)2020=(a+1)31+a+a(a+1)+a(a+1)2+a(a+1)2019=(a+1)2023故答案为:(a+1)2023【考点】本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键4、【解析】【分析】根据提公因式法及平方差公式可直接进行求解【详解】
13、解:;故答案为【考点】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键5、7【解析】【分析】由可得到,然后整体代入计算即可【详解】解:,故答案为:7【考点】本题考查了代数式的求值问题,注意整体代入的思想是解题的关键三、解答题1、(1)(a2b)(2ab)2a25ab2b2(2)见解析(3) (a2b)(a3b)a25ab6b2【解析】【分析】(1)根据长方形的面积=长宽,即可解决问题(2)画一个长为(a+3b),宽为(a+b)的长方形即可(3)任意写一个一个只含有a,b的等式,根据长方形的面积公式,确定长与宽,再利用分割法画出图形即可【详解】(1)(a2b)(2ab)2a25ab2b2
14、(2)画法不唯一,如图所示:(3)答案不唯一,例如:(ab)(a2b)a23ab2b2可以用下图表示:【考点】本题考查多项式乘多项式,长方形的面积等知识,解题的关键是理解题意,是数形结合的好题目,这里的等式左右两边分别表示长方形的面积的两种求法2、 (1)6(2)1250平方米(3)15【解析】【分析】(1)仿照材料二中的方法即可完成;(2)由题意可得到面积的代数式,仿照材料二中的方法可完成解答;(3)由材料一的方法可求得a与b的值,再根据c为正整数,即可求得三角形周长的最小值(1)x2-6x+3=(x2-6x+9)-6=(x-3)2-6(x+2)20x2-6x+3=(x-3)26-6代数式x
15、2+4x+2有最小值-6故答案为:-6(2)由题意,长方形平行于围墙的一边长度为(100-2x)米花圃的最大面积为:平方米,且所以花圃的最大面积为1250平方米(3)a2+b2+74=10a+14b(a2-10a+25)+(b2-14b+49)=0即,即a5=0,b7=0a=5,b=7根据三角形三边的不等关系,7-5c7+5即2c12c为正整数c=3,4,5,6,7,8,9,10,11这几个数ABC的周长为a+b+c=12+c当c=3时,ABC的周长最小,且最小值为12+3=15【考点】本题是材料阅读题,考查了完全平方公式的应用,读懂材料中提供的方法并能灵活运用是解题的关键3、(1)1500;
16、(2)27【解析】【分析】(1)先逆用积的乘方和幂的乘方运算法则,然后将已知代入即可解答;(1)先由得3x+4y=3,然后逆用积的乘方和幂的乘方运算法则将【详解】解:(1),;(2),【考点】本题考查了积的乘方和幂的乘方法则的逆用,灵活应用相关运算法则是解答本题的关键4、(1)页;(2)475页【解析】【分析】(1)根据题意,可以用含的代数式表示出这本书的页数;(2)将代入(1)中的代数式,即可求得这本书的页数【详解】解:(1),即这本书有页;(2)当时,答:这本书有475页【考点】本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式5、【解析】【分析】先分组提公因式、然后再用平方差公式因式分解即可【详解】解:原式=【考点】本题主要考查了因式分解,掌握分组提公因式和运用平方差公式因式分解是解答本题的关键