1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,AD是的角平分线,垂足为F,和的面积分别为60和35,则的面积为A2
2、5BCD2、如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A10B11C12D133、如图,若,则的度数为()A80B35C70D304、如图,在中,分别是,边上的中线,且与相交于点,则的值为()ABCD5、三角形的重心是()A三角形三边的高所在直线的交点B三角形的三条中线的交点C三角形的三条内角平分线的交点D三角形三边中垂线的交点二、多选题(5小题,每小题4分,共计20分)1、在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是()A三角形有且只有一条中线B三角形的高一定在三角形内部C三角形的两边之差大于第三边D三角形按边分类可分为等腰三角形和不等边
3、三角形2、如图,已知,在和中,如果AB DE,BC EF.在下列条件中能保证的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABDEFBACDFCABDEDAD3、在ABC和ABC中,已知A=A,AB=AB,下面判断中正确的是()A若添加条件AC=AC,则ABCABCB若添加条件BC=BC,则ABCABCC若添加条件B=B,则ABCABCD若添加条件 C=C,则ABCABC4、(多选)如图,在中,分别为边,上的点,平分,于点,为的中点,延长交于点,则下列判断中正确的结论有()A线段是的高B与面积相等CD5、下列命题中正确的是()A有两个角和第三个角的平分线对应相等的两个三角形全等;B有
4、两条边和第三条边上的中线对应相等的两个三角形全等;C有两条边和第三条边上的高对应相等的两个三角形全等D有两条边和一个角对应相等的两个三角形全等第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图点D、E分别在的边、上,与交于点F,则_2、图中A+B+C+D+E+F+G=_3、如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为_4、如果一个正多边形的一个内角是135,则这个正多边形是_5、已知:如图,是上一点,平分,若,则_(用的代数式表示) 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、如图1,点P、Q分
5、别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。2、如图,在ABC中,A=55,ABD=32,ACB=70,且CE平分ACB,求DEC的度数3、如图,D是ABC的边AC上一点,点E在AC的延长线上,EDAC,过点E作EFAB,
6、并截取EFAB,连接DF求证:DF=CB4、【教材呈现】如图是华师版七年级下册数学教材第76页的部分内容请根据教材提示,结合图,将证明过程补充完整【结论应用】(1)如图,在中,60,平分,平分,求的度数(2)如图,将的折叠,使点落在外的点处,折痕为若,则、满足的等量关系为 (用、的代数式表示) 线 封 密 内 号学级年名姓 线 封 密 外 5、如图,在中,D是边上的点,垂足分别为E,F,且求证:-参考答案-一、单选题1、D【解析】【分析】过点D作DHAC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明RtADF和RtADH全等,RtDEF和RtDGH全等,然后根据全
7、等三角形的面积相等列方程求解即可【详解】如图,过点D作于H,是的角平分线,在和中,在和中,和的面积分别为60和35,=12.5,故选D【考点】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键2、C【解析】【分析】设多边形的边数为n,根据多边形外角和与内角和列式计算即可;【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:设多边形的边数为n,根据题意可得:,化简得:,解得:;故选:C【考点】本题主要考查了多边形的内角和与外角和,结合一元一次方程求解是解题的关键3、D【解析】【分析】根据全等三角形的性质即
8、可求出E【详解】解:ABCADE,C=30,E=C=30,故选:D【考点】本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键4、A【解析】【分析】根据三角形的重心性质得到,根据三角形的面积公式得到,据此解题【详解】解:点是,边上的中线,的交点,故选:【考点】本题考查三角形重心的概念与性质、三角形面积等知识,是重要考点,掌握相关知识是解题关键5、B【解析】【分析】根据重心是三角形三边中线的交点,三角形三条高的交点是垂心,三角形三条角平分线的交点是三角形的内心,等知识点作出判断【详解】解:三角形三条高的交点是垂心,A选项不符合题意;三角形三条边中线的交点是三角形的重心,B选项符合题
9、意;三角形三条内角平分线的交点是三角形的内心,C选项不符合题意;三角形三边中垂线的交点三角形的外心,D选项不符合题意故选:B【考点】本题考查了三角形的重心、内心与外心等知识,是基础题,熟记概念是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题1、ABC【解析】【分析】三角形有三条中线对进行判断;钝角三角形三条高,有两条在三角形外部,对进行判断;根据三角形三边的关系对进行判断;根据三角形的分类对进行判断【详解】解:A三角形有3条中线,选项A的说法是错误的;B三角形的高不一定在三角形内部,选项B的说法是错误的;C三角形的两边之差小于第三边,选项C的说法是错误的;D三角形按边分类
10、可分为等腰三角形和不等边三角形是正确的故答案为:ABC【考点】本题考查了三角形的有关概念,属于基础题型要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键2、ABC【解析】【分析】非直角三角形,已知两组对应边相等,合适的判定条件有SAS,SSS依据三角形全等的判定即可判断【详解】这三个条件可组成SAS判定,故A正确这三个条件可组成SSS判定,故B正确由ABDE可得BDEF,这三个条件可组成SAS判定,故C正确这三个条件中对应角不是夹角,ASS不构成全等三角形判定条件,故D错误综上,故选ABC【考点】本题
11、主要考查了三角形全等的判定,熟悉三角形全等的判定条件是解决本题的关键3、ACD【解析】【分析】已知两个三角形的一组角和角的一组边相等,可添加已知角的另一组边相等,利用SAS判定三角形全等,也可以添加另外两个角中任意一组角相等,利用AAS或ASA判定三角形全等【详解】解:A选项,添加条件AC=AC,可利用SAS判定则ABCABC,选项正确,符合题意;B选项,添加条件BC=BC,不能判定两个三角形全等,选项不正确;C选项,添加条件B=B,可利用ASA判定ABCABC,选项正确,符合题意;D选项,添加条件C=C,可利用AAS判定ABCABC, 选项正确,符合题意;故选ACD【考点】本题主要考查全等三
12、角形的判定定理,解决本题的关键是要熟练掌握全等三角形的判定定理4、BCD【解析】【分析】根据三角形的高线、中线的性质及全等三角形与三角形内角和定理依次进行判断即可得出结果【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:CEAD,ACE的高是AF,不是AD,选项A不符合题意;G为AD中点,BG是ABD的中线,ABG与BDG面积相等,选项B符合题意;AD平分BAC,CEAD,EAF=CAF,AFE=AFC=90,在AFE与AFC中,AFEAFC,AE=AC,AEC=ACE,AB-AE=BE,AB-AC=BE,选项D符合题意;AEC=CBE+BCE,ACE=CBE+BCE,CAD+ACE
13、=90,CAD+CBE+BCE=90,选项C符合题意,故选:BCD【考点】题目主要考查全等三角形的判定和性质,三角形内角和定理及三角形的基本性质,熟练掌握全等三角形与三角形的基本性质是解题关键5、AB【解析】【分析】结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答【详解】A、正确可以用AAS判定两个三角形全等;如图:BB,CC,AD平分BAC,AD平分BAC,且ADAD, BB,CC,BACBAC,AD,AD分别平分BAC,BAC,BADBAD 线 封 密 内 号学级年名姓 线 封 密 外 ,ABDABD(AAS),ABAB,在ABC和ABC中, ,ABCABC(AAS)
14、B、正确可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,AD,AD分别为、 的中线,分别延长AD,AD到E,E,使得AD=DE,AD=DE, ,ADCEDB,BE=AC,同理:BE=AC,BE=BE,AE=AE,ABEABE,BAE=BAE,E=E,CAD=CAD,BAC=BAC, , ,BACBACC、不正确因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等故选:AB【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐
15、个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的三、填空题1、11【解析】【分析】根据,得出三角形面积之间的数量关系,设,则,列出二元一次方程组,解方程即可解答【详解】如图:连接 线 封 密 内 号学级年名姓 线 封 密 外 设,则,解得:故答案为:【考点】本题考查了三角形面积之间的数量关系,解二元一次方程,根据线段之间的数量关系得出三角形的面积关系,正确列出二元一次方程是解题关键2、540【解析】【分析】根据三角形外角的性质可得,1=C+D,2=E+F,再根据五边形内角和解答即可【详解】解:1=C+D,2=E+F,A+B+C+D+E+F+G=A+B+1+2+G=54
16、0故答案为:540【考点】本题考查了三角形外角的性质和五边形内角和利用三角形内角与外角的关系把所求的角的度数归结到五边形中,利用五边形的内角和定理解答3、72【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,ABC=BAE=108,然后利用三角形内角和定理得BAC=BCA=ABE=AEB=(180108)2=36,最后利用三角形的外角的性质得到 线 封 密 内 号学级年名姓 线 封 密 外 AFE=BAC+ABE=72【详解】五边形ABCDE为正五边形,AB=BC=AE,ABC=BAE=108,BAC=BCA=ABE=AEB=(180108)2=36,AFE=BAC+ABE=72,故
17、答案为72【考点】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键4、正八边形【解析】【分析】根据正多边形的外角和为即可求出正多边形的边数【详解】解:正多边形的一个内角是135,它的每一个外角为45又因为多边形的外角和恒为360,360458,即该正多边形为正八边形故答案为:正八边形【考点】本题主要考查正多边形的外角和,掌握正多边形的外角和是解决问题的关键5、【解析】【分析】过点D分别作DEAB,DFAC,根据角平分线的性质得到DE=DF,根据表示出DE的长度,进而得到DF的长度,然后即可求出的值【详解】如图,过点D分别作DEAB,DFAC,平分,DE=DF,故答案为:【考点】此题考
18、查了角平分线的性质定理,三角形面积的表示方法,解题的关键是根据题意正确作出辅助线 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题1、(1)见解析;(2)CMQ=60,不变;(3)当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120,不变【解析】【分析】(1)利用SAS可证全等;(2)先证ABQCAP,得出BAQ=ACP,通过角度转化,可得出CMQ=60;(3)存在2种情况,一种是PQB=90,另一种是BPQ=90,分别根据直角三角形边直角的关系可求得t的值;(4)先证PBCACQ,从而得出BPC=MQC,然后利用角度转化可得出CMQ=120【详解】(1)证明:在等边三角形ABC中
19、,AB=AC,B=CAP=60又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ;(2)CMQ=60不变等边三角形中,AB=AC,B=CAP=60又由条件得AP=BQ,ABQCAP(SAS),BAQ=ACP,CMQ=ACP+CAM=BAQ+CAM=BAC=60;(3)设时间为t,则AP=BQ=t,PB=4-t,当PQB=90时,B=60,PB=2BQ,得4-t=2t,t=;当BPQ=90时,B=60,BQ=2BQ,得t=2(4-t),t=;当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120不变,在等边三角形中,AB=AC,B=CAP=60,PBC
20、=ACQ=120,又由条件得BP=CQ,PBCACQ(SAS),BPC=MQC,又PCB=MCQ,CMQ=PBC=180-60=120【考点】本题考查动点问题中三角形的全等,解题关键是找出图形中的全等三角形,利用全等三角形的性质进行角度转化,得出需要的结论2、DEC =58【解析】【分析】先根据A=55,ACB=70得出ABC的度数,再由ABD=32得出CBD的度数,根据CE平分ACB得出BCE的度数,最后用三角形的外角即可得出结论 线 封 密 内 号学级年名姓 线 封 密 外 【详解】在ABC中,A=55,ACB=70,ABC=55,ABD=32,CBD=ABC-ABD=23,CE平分ACB
21、,BCE=ACB=35,在BCE中,DEC=CBD+BCE=58【考点】此题考查了三角形内角和定理和三角形外角的性质,熟练掌握这些性质是解题的关键.3、证明过程见解析【解析】【分析】根据EFAB,得到,再根据已知条件证明,即可得解;【详解】EFAB,在和中,;【考点】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键4、教材呈现:见解析;(1)120;(2)【解析】【分析】【教材呈现】利用两直线平行,同位角相等,内错角相等,把三角形三个内角转化成一个平角,从而得证【结论应用】(1)利用角平分线的性质得出两个底角之和,从而求出P度数(2)根据四边形BCFD内角和为360,分别表示出各角得出等式即可【详解】解:教材呈现:CDBA,1ACD3+ACD+DCE180,结论应用:(1)BP平分,CP平分, 线 封 密 内 号学级年名姓 线 封 密 外 , (2),在ABC中,又四边形BCDF内角和为360,【考点】本题考查平行线的性质,角平分线的定义,三角形内角和定理,翻折等知识,根据翻折前后对应角相等时解题的关键5、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明:,在和中,【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观