1、人教版八年级数学上册第十五章分式专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方
2、等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟2、若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m3、下列运算正确的是()Aa3a2aB(2ab)24a2b2C-3a-2a2-3D(3a3b)26a6b24、已知a2b0,则代数式的值为()A1BCD25、下列运算中,错误的是()ABCD6、俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为的小洞,数据用科学记数法表示为()ABCD7、分式与的最简公分母是()ABCD8、要把分式方程化为整式方程,方程两边要同时乘以()ABCD9、下
3、列各式从左到右变形正确的是()A+=3(x+1)+2yB=C=D=10、对分式通分后,的结果是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解是_2、若关于x的分式方程的解是正数,则k的取值范围是_3、不改变分式的值,把的分子与分母中各项系数都化为整数为_4、化简:_5、若,则的值等于_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,且x为满足3x2的整数2、先化简,再求值:,其中3、按下列要求解题(1)计算:(2)化简:(3)计算:4、若分式有意义,求x的取值范围.5、解答下列各题:(1)解方程:(2)解不等式组:,并把解集表示
4、在数轴上-参考答案-一、单选题1、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键2、B【解析】【分析】先去分母解方程,根据方程的解为正数列不等式即可【详解】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故选:B【考点】本题考查含参数的分式方程解法,不等式,分式有意义条件,解题的关
5、键是掌握含参数的分式方程解法,不等式,分式有意义条件3、C【解析】【分析】根据合并同类项,完全平方公式,同底数幂相乘,积的乘方法则,逐项判断即可求解【详解】解:A、和不是同类项,无法合并,故本选项错误,不符合题意;B、,故本选项错误,不符合题意;C、-3a-2a2-3,故本选项正确,符合题意;D、(3a3b)29a6b2,故本选项错误,不符合题意;故选:C【考点】本题主要考查了合并同类项,完全平方公式,同底数幂相乘,积的乘方法则,熟练掌握相关运算法则是解题的关键4、B【解析】【分析】把a2b0代入代数式整理后约分可得【详解】解:因为a2b0,所以故选:B【考点】本题考查分式的化简求值,将代数式
6、进行化简是解题的关键5、D【解析】【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变据此作答【详解】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、,故D错误故选D【考点】本题考查了分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为06、A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10
7、-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:,故选:A【考点】本题考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、B【解析】【分析】根据最简公分母的定义即可得【详解】解:与的分母分别为和,分式与的最简公分母是,故选B【考点】本题考查了最简公分母的定义,掌握定义是解题关键确定最简公分母的方法:(1)如果各分母都是单项式,那么最简公分母就是各分母数字系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里;(2)如果各分母都是多项式,就
8、先将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母为底数的幂的因式都要取最高次幂8、D【解析】【分析】根据最简公分母的确定方法确定分式的最简公分母即可解答.【详解】解:分式的最简公分母2x(x-2),把分式方程化为整式方程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根9、C【解析】【分析】根据分式的性质逐项分析即可A选项分子分母同时乘以6,B选项分子分母同时乘以100,C选项分子分母同时乘以-1,D选项分子因式分解【详解】A+=, 故该选项不正确,不符合题意;B=,
9、 故该选项不正确,不符合题意;C=,故该选项正确,符合题意;D=,故该选项不正确,不符合题意;故选C【考点】本题考查了分式的性质,掌握分式的性质是解题的关键10、B【解析】【分析】把a2-b2因式分解,得出的最简公分母,根据分式的基本性质即可得答案【详解】a2-b2=(a+b)(a-b),分式的最简公分母是,通分后,=故选:B【考点】本题考查分式的通分,正确得出最简公分母是解题关键二、填空题1、-3【解析】【分析】根据解分式方程的步骤去分母,解方程,检验解答即可【详解】解:方程的两边同乘,得:,解这个方程,得:,经检验,是原方程的解,原方程的解是故答案为-3【考点】本题考查分式方程的解法,掌握
10、分式方程的解题步骤是关键2、且【解析】【分析】根据题意,将分式方程的解用含的表达式进行表示,进而令,再因分式方程要有意义则,进而计算出的取值范围即可【详解】解: 根据题意且k的取值范围是且【考点】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键3、【解析】【分析】根据分式的基本性质进行计算即可;【详解】故答案为:【考点】本题主要考查了分式的基本性质,准确计算是解题的关键4、【解析】【分析】根据分式的乘法和除法法则进行计算即可【详解】解:【考点】本题主要考查了分式的乘法和除法法则,在乘除过程中可以进行约分化简,使问题简单化,要注意将结
11、果化到最简,熟练掌握分式的乘除法法则是解决本题的关键5、【解析】【分析】先把分式进行化简,再代入求值【详解】=当a=时,原式=故答案为【考点】分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键三、解答题1、2x3,-5【解析】【分析】根据分式的运算法则即可求出答案【详解】原式=+=(+)x=x1+x2=2x3由于x为满足3x2的整数,x0且x1且x2,所以x=1,原式=23=5【考点】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型2、,-10【解析】【分析】根据分式的减法运算以及乘除运算进行化简,然后将x的值代入原式即可求出答案【
12、详解】解:.当x5时,原式-10.【考点】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型3、(1);(2);(3)【解析】【分析】(1)化成最简二次根式后合并即可;(2)先化成最简二次根式,分母有理化后再合并即可;(3)先分子分母因式分解,把除法运算转化成乘法运算,约分即可【详解】(1) =32242=682=22;(2) ; (3) =【考点】本题考查了分式的乘除和二次根式的化简,熟练掌握运算法则是解题的关键4、【解析】【分析】先把除法化为乘法,再根据分式有意义的条件即可得到结果【详解】,x+20且x+40且x+30,解得:x2、3、4【考点】本题主要考查了分式有意义的条件,关键是注意分式所有的分母部分均不能为0,分式才有意义5、(1)方程无解;(2),数轴见解析【解析】【分析】(1)解分式方程,先去分母,然后去括号,移项,合并同类项,系数化1,注意结果要进行检验;(2)解一元一次不等式组,分别求出各不等式的解集,再在数轴上表示出来即可【详解】解:(1)去分母得:,去括号得:,移项合并同类项得:,系数化为1得:,经检验时,则为原方程的增根,原分式方程无解 (2),由得,由得,不等式组的解集为:,在数轴上表示如图:【考点】本题考查解分式方程和解一元一次不等式组,掌握运算顺序和计算法则正确计算是解题关键