1、八年级数学上册第十二章全等三角形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A带去B带去C带去
2、D都带2、图,则的对应边是()ABCD3、如图,ABCADE,B=80,C=30,DAC=35,则EAC的度数为()A40B30C35D254、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D505、如图,在中,垂足分别为D,E,交于点H,已知,则的长是()A1BC2D6、如图,已知在四边形中,平分,则四边形的面积是()A24B30C36D427、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为()A15B45C15或30D15或458、作
3、平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD9、如图,在梯形中,那么下列结论不正确的是( )ABCD10、如图,在中,的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,点在一块直角三角板上(其中),于点,于点,若,则_度2、如图,ABC中,ACB=90,AC=12,BC=16点P从A点出发沿ACB路径向终点运动,终点为B点;点Q从B点出
4、发沿BCA路径向终点运动,终点为A点点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PEl于E,QFl于F若要PEC与QFC全等,则点P的运动时间为_3、如图,MNPQ,ABPQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,ADBC7,ADEB,DEEC,则AB_4、在ABC中,C=90,AD是ABC的角平分线,BC=6、AC=8、AB=10,则点D到AB的距离为_5、如图,已知AC与BF相交于点E,ABCF,点E为BF中点,若CF8,AD5,则BD_三、解答题(5小题,每小题10分,共计50分)1、如图,若OADOBC,且O=
5、65,BEA=135,求C的度数2、如图,已知,求证:3、已知:如图,AB=DE,ABDE,BE=CF,且点B、E、C、F都在一条直线上,求证:ACDF4、已知:如图,在ABC中,ABAC,在ADE中,ADAE,且BACDAE,连接BD,CE交于点F,连接AF(1)求证:ABDACE;(2)求证:FA平分BFE5、如图,AD是ABC的角平分线,DE、DF分别是ABD和ACD的高(1)求证:AD垂直平分EF;(2)若AB+AC10,SABC15,求DE的长-参考答案-一、单选题1、C【解析】【分析】根据三角形全等的判定定理判断即可【详解】带去,理由如下:中满足ASA的条件,带去,故选C【考点】本
6、题考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解题的关键2、C【解析】【分析】根据全等三角形中对应角所对的边是对应边,可知BC=DA【详解】解:ABCCDA,BAC=DCA,BAC与DCA是对应角,BC与DA是对应边(对应角对的边是对应边)故选C【考点】本题考查了全等三角形中对应边的找法,解题的关键是掌握书写的特点3、C【解析】【分析】根据三角形的内角和定理列式求出BAC,再根据全等三角形对应角相等可得DAE=BAC,然后根据EAC=DAE-DAC代入数据进行计算即可得解【详解】解:B=80,C=30,BAC=180-80-30=70,ABCADE,DAE=BAC=70,EAC=DA
7、E-DAC,=70-35,=35故选C【考点】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键4、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边5、A【解析】【分析】利用“八字形”图形推出EAH=ECB,根据,EH=3,求出AE=4,证明AEHCEB,得到AE=CE=4,即可求出CH
8、【详解】解:,CEB=,AHE=CHD,EAH=ECB,EH=3,AE=4,AEH=CEB,EAH=ECB,EH=BE,AEHCEB,AE=CE=4,CH=CE-EH=4-3=1,故选A【考点】此题考查了全等三角形的判定及性质,“八字形”图形的应用,熟记全等三角形的判定定理是解题的关键6、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是
9、解题的关键7、D【解析】【分析】根据题意作图,可得出OP为AOB的角平分线,有,以OP为边作POC15,则BOC的度数有两种情况,依据所作图形即可得解.【详解】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,则OP为AOB的平分线,(2)两弧在AOB内交于点P,以OP为边作POC15,则BOC15或45,故选:D【考点】本题考查的知识点是根据题意作图并求解,依据题意作出正确的图形是解题的关键.8、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,
10、即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键9、A【解析】【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出ADB=90,从而得出B正确;C、由梯形的性质得出ABCD,结合角的计算即可得出ABC=60,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出DAC=CAB,即D正确综上即可得出结论【详解】A、AD=DC,ACAD+DC=2CD,故A不正确;B、四边
11、形ABCD是等腰梯形,ABC=BAD,在ABC和BAD中,ABCBAD(SAS),BAC=ABD,ABCD,CDB=ABD,ABC+DCB=180,DC=CB,CDB=CBD=ABD=BAC,ACB=90,CDB=CBD=ABD=30,ABC=ABD+CBD=60,B正确,C、ABCD,DCA=CAB,AD=DC,DAC=DCA=CAB,C正确D、DABCBA,ADB=BCAACBC,ADB=BCA=90,DBAD,D正确;故选:A【考点】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误本题属于中档题,稍显繁琐,但好在该题为选择
12、题,只需由三角形的三边关系得出A不正确即可10、A【解析】【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确;AC=AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全
13、等三角形的判定及性质,熟记各知识点并综合应用是解题的关键二、填空题1、15【解析】【分析】根据,判断OB是的角平分线,即可求解【详解】解:由题意,即点O到BC、AB的距离相等, OB是的角平分线, ,故答案为:15【考点】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键2、1或3.5或12【解析】【分析】分4种情况求解:P在AC上,Q在BC上,推出方程6-t=8-3t,P、Q都在AC上,此时P、Q重合,得到方程6-t=3t-8,Q在AC上,P在BC上,Q在AC时,此时不存在,当Q到A点,与A重合,P在BC上时【详解】解:PEC与QFC全等,斜边
14、CP=CQ,有四种情况:P在AC上,Q在BC上,CP=12-2t,CQ=16-6t,12-2t=16-6t,t=1;P、Q都在AC上,此时P、Q重合,CP=12-2t=6t-16,t=3.5;P到BC上,Q在AC时,此时不存在;理由是:286=,122=6,即Q在AC上运动时,P点也在AC上运动;当Q到A点(和A重合),P在BC上时,CP=CQ=AC=12CP=12-2t,2t-12=12,t=12符合题意;答:点P运动1或3.5或12时,PEC与QFC全等【考点】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意得出方程是解此题的关键3、7【解析】【详解】由MNP
15、Q,ABPQ,可知DAE=EBC=90,可判定ADEBCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单4、或【解析】【分析】作DEAB于E,如图,先根据勾股定理计算出BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用面积法得到10x=6(8-x),然后解方程即可【详解】解:作DEAB于E,如图,AD是ABC的一条角平分线,DCAC,DEAB,DE=DC,设DE=DC=x,SABD=DEAB=ACBD,即10x=8(6-x),解得x=,即点D到AB边的距离为故答案为:【考点
16、】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,由已知能够注意到D到AB的距离即为DE长是解决的关键5、3【解析】【分析】利用全等三角形的判定定理和性质定理可得结果【详解】解:ABCF,A=FCE,B=F,点E为BF中点,BE=FE,在ABE与CFE中,ABECFE(AAS),AB=CF=8,AD=5,BD=3,故答案为:3【考点】本题主要考查了全等三角形的判定定理和性质定理,熟练掌握定理是解答此题的关键三、解答题1、35【解析】【分析】根据全等三角形对应角相等可得C=D,OBC=OAD,再根据三角形的内角和等于180表示出OBC,然后利用四边形的内角和等于360列方程求解即
17、可【详解】C=D,OBC=OAD,O=65,OBC=18065C=115C,在四边形AOBE中,O+OBC+BEA+OAD=360,65+115C+135+115C=360,解得C=35.【考点】此题考查了全等三角形的性质和四边形的内角和等于360,熟练掌握这两个性质是解题的关键.2、见详解【解析】【分析】根据SSS定理推出ADBBCA即可证明【详解】证明:在ADB和BCA中, ADBBCA(SSS),【考点】本题考查了全等三角形的性质和判定,能正确进行推理证明全等是解此题的关键3、详见解析【解析】【分析】首先利用平行线的性质B=DEF,再利用SAS得出ABCDEF,得出ACB=F,根据平行线
18、的判定即可得到结论【详解】证明:ABDE,B=DEC,又BE=CF,BC=EF,在ABC和DEF中,ABCDEF(SAS),ACB=F,ACDF【考点】本题考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键4、 (1)见解析(2)见解析【解析】【分析】(1)根据SAS证明结论即可;(2)作AMBD于M,作ANCE于N由(1)可得BDCE,SBADSCAE,然后根据角平分线的性质即可解决问题(1)证明:BACDAE,BAC+CADDAE+CAD,即BADCAE,在BAD和CAE中,BADCAE(SAS);(2)证明:如图,作AMBD于M,作ANCE于N 由BAD
19、CAE,BDCE,SBADSCAE,AMAN,点A在BFE平分线上,FA平分BFE【考点】本题考查全等三角形的判定和性质、三角形的面积,解题的关键是熟练掌握全等三角形的判定和性质,学会转化的思想,巧用等积法进行证明5、(1)见解析;(2)【解析】【分析】(1)由角平分线的性质得DEDF,再根据HL证明RtAEDRtAFD,得AEAF,从而证明结论;(2)根据DEDF,得,代入计算即可【详解】(1)证明:AD是ABC的角平分线,DE、DF分别是ABD和ACD的高,DEDF,在RtAED与RtAFD中,RtAEDRtAFD(HL),AEAF,DEDF,AD垂直平分EF;(2)解:DEDF,AB+AC10,DE3【考点】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点