1、人教版九年级数学上册第二十二章二次函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在“探索函数的系数,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,同学们探索了经过这四个点中的三个点
2、的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为()ABCD2、某超市销售一种商品,每件成本为元,销售人员经调查发现,该商品每月的销售量(件)与销售单价(元)之间满足函数关系式,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A元,元B元,元C元,元D元,元3、如图,抛物线yx2+7x与x轴交于点A,B,把抛物线在x轴及共上方的部分记作C1将C1向左平移得到C2,C2与x轴交于点B,D,若直线yx+m与C1,C2共3个不同的交点,则m的取值范是()ABCD4、一次函数与二次函数在同一坐标系中的图象大致为( )ABCD5、
3、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD6、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD7、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值68、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)9、关于抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线10、在
4、同一坐标系中,二次函数与一次函数的图像可能是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,二次函数的图像过点(-1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c0;若点A(-3,)、点B()、点C()在该函数图像上,则:若方程的两根为,且,则其中正确的结论有_ (只填序号)2、各种盛水容器可以制作精致的家用流水景观(如图1)科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为,如果在离水面竖直距离为h(单位:)的地方开大小合适的小孔,那么从小孔射出水的射程s(单位:)与h的关系式为,则射程s最大值是_(射程是指水流落地点离小孔的水
5、平距离)3、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为_4、如图为二次函数的图象,根据图象可以得到方程的一个根在_与_之间,另一个根在_与_之间5、如图,ABC90,AC6,以AB为边长向外作等边ABM,连CM,则CM的最大值为 _三、解答题(5小题,每小题10分,共计50分)1、已知二次函数(1)当该二次函数的图象经过点时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上
6、以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求BPQ面积的最大值;(3)若对满足的任意实数x,都使得成立,求实数b的取值范围2、某企业接到生产一批设备的订单,要求不超过12天完成这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元台),m与x的关系如图所示(1)若第x天可以生产这种设备y台,则y与x的函数关系式为_,x的取值范围为_;(2)第几天时,该企业当天的销售利润最大?最大
7、利润为多少?(3)求当天销售利润低于10800元的天数3、如图,在平面直角坐标系中抛物线y=ax2+bx+2(a0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(,0),直线BC的解析式为(1)求抛物线的解析式;(2)过点A作AD/BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a0)的对称轴上一动点,点N为平移后的抛物线上一动点在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N
8、为顶点的四边形为平行四边形,若存在,直接写出点N的坐标;若不存在,请说明理由4、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?5、如图,矩形ABCD中,AB=6cm,BC=12cm. 点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速
9、度向点C移动. 若M, N分别从A, B点同时出发,设移动时间为t (0t0得到b0,则一次函数y=ax+b经过第一、三、四象限,所以A选项正确;D、由二次函数y=ax2+bx的图象得a0,再根据0,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值8、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个
10、交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标9、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】A选项:,抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答10、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无
11、交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾
12、,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上二、填空题1、【解析】【分析】根据二次函数的图象与系数的关系即可求出答案【详解】解:由对称轴可知:x2,4ab0,故正确;由图可知:x3时,y0,9a3bc0,即9ac3b,故正确;令x1,y0,abc0,b4a,c5
13、a,8a7b2c8a28a10a30a由开口可知:a0,8a7b2c30a0,故正确;由抛物线的对称性可知:点C关于直线x2的对称点为(,y3),3,y1y2y3故错误;由题意可知:(1,0)关于直线x2的对称点为(5,0),二次函数yax2bxca(x1)(x5),令y3,直线y3与抛物线ya(x1)(x5)的交点的横坐标分别为x1,x2,x115x2故正确;故答案为:【考点】本题考查二次函数的图象,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型2、20【解析】【分析】将s2=4h(20-h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可【详解
14、】解:s2=4h(20-h)=-4(h-10)2+400,当h=10cm时,s有最大值20cm当h为10cm时,射程s有最大值,最大射程是20cm;故答案为:20【考点】本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键3、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个
15、交点,解得,当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键4、 -1 0 2 3【解析】【分析】观察图象可得:二次函数y=ax2+bx+c的图象与x轴的交点有两个,一个在-1与0之间,另一个在2与3之间;然后由二次函数与一元二次方
16、程的关系,即可求得答案【详解】二次函数的图象与x轴的交点有两个,一个在1与0之间,另一个在2与3之间;方程的一个根在1与0之间,另一个根在2与3之间.故答案为1,0,2,3.【考点】此题考查了图象法求一元二次方程的近似根的知识.此题难度不大,注意掌握数形结合思想的应用.5、#【解析】【分析】过点M作MDBC,交BC的延长线于点D,设ABx,利用勾股定理表示出BC,利用解直角三角形表示出MD,BD,再利用勾股定理求得CM的长,根据配方法利用非负数的性质即可得到CM的最大值【详解】如图,过点M作MDBC,交BC的延长线于点D, 设ABx,则,ABM是等边三角形,BMABx,ABM60,ABC90,
17、MBD30,MDBC,在RtMDC中,当x218时,CM有最大值,CM的最大值为:故答案为:【考点】本题考查勾股定理以及配方法,掌握配方法求出最值是解题的关键三、解答题1、(1);(2);(3)-3b1【解析】【分析】(1)根据待定系数法,即可求解;(2)先求出A(1,0),B(-3,0),C(0,-3),设运动时间为t,则AP=2t,BQ=t,BP=4-2t,过点M作MQx轴,可得MQ=t,从而得到BPQ的面积的表达式,进而即可求解;(3)设,结合函数图像的对称轴,开口方向,分两种情况:或,进而即可求解【详解】解:(1)把代入,得:,解得:b=1,该二次函数的表达式为:;(2)令y=0代入,
18、得:,解得:或,令x=0代入得:y=-3,A(1,0),B(-3,0),C(0,-3),设运动时间为t,则AP=2t,BQ=t,BP=4-2t,过点M作MQx轴,OB=OC=3,OBC=45,是等腰直角三角形,MQ=BQ=t,BPQ的面积=,当t=1时,BPQ面积的最大值=;(3)抛物线的对称轴为:直线x=-b,开口向上,设,对的任意实数x,都使得成立,或,-1b1或-3b-1,-3b1【考点】本题主要考查二次函数综合,掌握待定系数法,二次函数的性质以及根据图像对称轴位置,列出不等式组,是解题的关键2、(1); (2)第6天时,该企业利润最大,为12800元.(3)7天【解析】【分析】(1)根
19、据题意确定一次函数的解析式,实际问题中x的取值范围要使实际问题有意义;(2)求出当天利润与天数的函数解析式,确定其最大值即可;(3)根据(2)中的函数解析式列出不等式方程即可解答【详解】(1)根据题意,得y与x的解析式为:()(2)设当天的当天的销售利润为w元,则根据题意,得当1x6时,w=(1200-800)(2x+20)=800x+8000,8000,w随x的增大而增大,当x=6时,w最大值=8006+8000=12800当6x12时,易得m与x的关系式:m=50x+500w=1200-(50x+500)(2x+20)=-100x2+400x+14000=-100(x-2)2+14400此
20、时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,当x=7时,w有最大值,为11900元,1280011900,当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元(3)由(2)可得,1x6时, 解得:x3.5则第1-3天当天利润低于10800元,当6x12时,解得x-4(舍去)或x8则第9-12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天【考点】本题主要考查一次函数和二次函数的应用,解题关键在于理解题意,利用待定系数法确定函数的解析式,并分类讨论3、(1);(2)四边形BECD面积的最大值为,E(,);(3
21、)存在N的坐标为(,)或(,)或(,)【解析】【分析】(1)由直线解析式求得B、C两点坐标,结合A点坐标利用待定系数法进行求解即可;(2)易求AD的解析式为,进而D(,)求得CD的解析式为,进而求出CD与x轴的交点坐标,易求BCD的面积为,设E(x,),表示出SBECD的面积,进而利用二次函数的性质即可求得答案;(3)存在先求出抛物线的顶点坐标,根据平移规律求平移后抛物线解析式,设M(,m),N(xn,yn),易根据平行四边形对角线互相平分及中点公式分类讨论即可得答案【详解】(1),当x=0时,y=2,当y=0时,解得:x=,所以B(,0),C(0,2),将A(,0),B(,0)代入y=ax2
22、+bx+2,得 ,解得:,所以抛物线的解析式为;(2)AD/BC,设直线AD解析式为:将A(,0)代入得:,解得:m=-,所以AD的解析式为,联立 ,解得:,A(,0),D(,)设CD解析式为y=kx+2,将点D坐标代入得:,解得:k=,所以CD的解析式为:,当y=0时,即,解得:x=,则CD与x轴的交点为(,0)所以SBCD=,设E(x,),则SBECD=,当x=时,四边形BECD面积最大,其最大值为,此时E(,)(3)存在N的坐标为(,),或(,),或(,)过程如下:,所以抛物线的顶点是(,),将抛物线向左平移个单位,则平移后抛物线解析式为设M(,m),N(xn,yn),当AM为对角线时,
23、则,解得:xn=,代入解析式得yn=所以N(,),如图对角线交点坐标为(0,),M坐标为(,)当AE为对角线时,则,解得:xn=,代入解析式得yn=所以N(,),如图对角线交点坐标为(,),M坐标为(,0)当AN为对角线时,则,解得:xn=,代入解析式得yn=所以N(,)如图对角线交点坐标为(,),M坐标为(,-8)【考点】本题考查了二次函数的综合题,涉及了待定系数法,一次函数图象与坐标轴的交点,二次函数图象的平移,二次函数的最值,平行四边形的性质等,综合性较强,有一定的难度,准确识图,把握并灵活运用相关知识是解题的关键,注意数形结合思想与分类讨论思想的运用4、(1)甲种商品每箱盈利15元,则
24、乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元【解析】【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得: ,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2
25、)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元【考点】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式5、(1)27(2) 【解析】【分析】(1)根据t秒时,M、N两点的运动路程,分别表示出AM、BM、BN、CN的长度,由SDMN=S矩形ABCDSADMSBMNSCDN进行列式即可得到S关于t的函数关系式,通过配方
26、即可求得最小值;(2)当DMN为直角三角形时,由MDN90,分NMD或MND为90两种情况进行求解即可得.【详解】(1) 由题意,得AM=tcm,BN=2tcm,则BM=(6t)cm,CN=(122t)cm,SDMN=S矩形ABCDSADMSBMNSCDN,S=12612t(6t)2t6(122t)=t26t+36=(t3)2+27,t=3在范围0t6内,S的最小值为27cm2;(2) 当DMN为直角三角形时,MDN90,可能NMD或MND为90,当NMD=90时,DN2=DM2+MN2,(122t)2+62=122+t2+(6t)2+(2t)2,解得t=0或18,不在范围0t6内,不可能;当MND=90时,DM2=DN2+MN2,122+t2=(122t)2+62+(6t)2+(2t)2,解得t=或6,(6不在范围0t6内舍),S=(3)2+27=cm2.【考点】本题考查了二次函数的应用,涉及矩形的性质、三角形面积、二次函数的性质、勾股定理的应用等知识,熟练掌握和灵活应用相关知识是解题的关键.