1、巧用初等数学的方法求证正弦交流电有效值 在现行中学物理教材中,由于某些知识的起点较高,学生的认知水平的限制及学生数学知识等条件的限制,有不少内容都是直接给出结论性的知识 ,而不作深入研究这样 的安 排对大多数学生来说是合理的、科学的如:正弦交电的峰值与有效值之间的关系这个问题在高中教材中都是直接给出的,不作证明但教师在教学过程中,可以不一定拘泥于教材的限制 ,特别是针对那些学 有所长的学生来说 ,教师要努力突破教科书的禁锢 ,在科学 、合理 ,不给学生增加负担的原则下,另辟捷径 ,对教材内容进行延伸,从而扩大学生的知识面,提高学生的科学思维能力下面对正弦交流电的峰值与有效值之间的关系证明这个问
2、题,从初等数学的角度,借助思维的灵活性与巧妙性 ,来进行阐述 ,达到挖掘教材深度,丰富教学内容的目的u2OUm-UmTttO-UmTt 等效法:假设有两个交变电压其最大值与周期均相同,瞬时值表达式分别为u1=Umsint、u2=Umcost,其中,=2/T。把它们分别加在两个阻值相同的电阻上,设电阻的阻值为R,由于电流的热效应与电流的方向及先后作用的时间顺序无关,故在一个周期内两个交流电产生的热量相等,设都为Q,产生的总热量Q总=2Q。在任一时刻t,这两个电阻上的热功率分别为 ,两个电阻上总的发热功率为。可见两个电阻上总的发热功率是一个定值,与时刻t无关,所以在一个周期内两个电阻上总的发热量为
3、.用一个恒定电压为U的电源,分别给两个相同的电阻R供电,在相同时间T内,每个电阻产生的热量是Q=,两个电阻产生的总热量为Q=.由热效应的等效可知。可得。而这个恒定电流的电压U就是正弦交变电流的电压的有效值。电流、电动势有效值可同法证得。平均值法:设流过定值电阻R的电流按正弦规律变化,即i=Imsint,交流电的瞬时功率为p=i2R=Im2Rsin2t. 因为 代入得 。上式中,后一项在一个周期内平均值为零,因此在一个周期内交流电平均功率为:(为最大瞬时功率的一半)如果考虑一个恒定电流I与其等效,即P=I2R,就有P=,即,所以 图像法: 设通过电阻R的正弦交流电电流表达式为,则 交流 电的瞬时
4、功率为,作出交流电的 Pt图象如图所示 .由微元方法可知曲线与时间轴所包围的面积表示交流电在一个周期内产生的热量利 用割补法或“移峰填谷”的方法,将斜线所画部分截下,倒过来恰好可以填充在 “谷 ”里从图象可以很直观地发现 :曲线与横轴所包围的面积,正好等于高为、宽为 T的矩形面积,此矩形面积在数 值上又恰等于该交流电在一个周期内产生的热量 根据有效值的定义,有 ,即 , 所以 。 数学是工具 ,掌握用数学方法分析、解决物理问题的能力, 是我们培养学生能力的其中一方面同时,在学好物理概念、规律等的基础上,借助数学的巧妙运算 ,能进一步巩固和扩展学生的基础知识 ,开拓思路 ,提高分析问题和解决问题的能力并且 ,通过发展学生的创造性思维 ,必定有利于学生全面素 质的提高