1、绝密启用前2016年普通高等学校招生全国统一考试物 理注意事项:1本试卷分第卷(选择题)和第卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答第卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3回答第卷时,将答案写在答题卡上。写在本试卷上无效。4考试结束后,将本试卷和答题卡一并交回。第卷一、单项选择题:本题共6小题,每小题3分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中,A速度和加速度的
2、方向都在不断变化B速度与加速度方向之间的夹角一直减小C在相等的时间间隔内,速率的改变量相等D在相等的时间间隔内,动能的改变量相等【答案】B【考点定位】平抛运动、动能定理【名师点睛】解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,结合加速度公式和动能定理公式灵活求解即可。2如图,在水平桌面上放置一斜面体P,两长方体物块a和b叠放在P的斜面上,整个系统处于静止状态。若将a和b、b与P、P与桌面之间摩擦力的大小分别用f1、f2和f3表示。则Af1=0,f20,f30 Bf10,f2=0,f3=0Cf10,f20,f3=0 Df10,f20,f30【答案】C【考点定位】共点力的平衡、整体法
3、、隔离法【名师点睛】“整体隔离法”是力学中的重要方法,一定要熟练掌握,注意对于由多个物体组成的系统,不涉及内力时优先考虑以整体为研究对象。3如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动。已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2。重力加速度大小为g,则N1N2的值为A3mg B4mg C5mg D6mg【答案】D【解析】设小球在最低点时速度为v1,在最高点时速度为v2,根据牛顿第二定律有,在最低点:N1mg=,在最高点:N2+mg=;从最高点到最低点,根据动能定理有mg2R=,联立可得:N1N2=6mg,故选项D正确。【考点定位】牛顿第二
4、定律、动能定理【名师点睛】解决本题的关键知道向心力的来源,知道最高点的临界情况,通过动能定理和牛顿第二定律进行求解。4如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距。两导线中通有大小相等、方向向下的恒定电流。若A金属环向上运动,则环上的感应电流方向为顺时针方向B金属环向下运动,则环上的感应电流方向为顺时针方向C金属环向左侧直导线靠近,则环上的感应电流方向为逆时针方向D金属环向右侧直导线靠近,则环上的感应电流方向为逆时针方向【答案】D【考点定位】楞次定律【名师点睛】解决本题的关键会用安培定则判断电流周围磁场的方向,以及学会根据楞次定律来
5、确定感应电流的方向。5沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度时间图线如图所示。已知物体与斜面之间的动摩擦因数为常数,在05 s、510 s、1015 s内F的大小分别为F1、F2和F3,则AF1F3CF1F3 DF1=F3【答案】A【解析】由vt图象可知,05 s内加速度a1=0.2 m/s2,沿斜面向下,根据牛顿第二定律有mgsin fF1=ma1,F1=mgsin f0.2m;510 s内加速度a2=0,根据牛顿第二定律有mgsin fF2=ma2,F2=mgsin f;1015 s内加速度a3=0.2 m/s2,沿斜面向上,根据牛顿第二定律有mgsin fF3
6、=ma3,F3=mgsin f+0.2m。故可得:F3F2F1,选项A正确。【考点定位】图像,牛顿第二定律【名师点睛】本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,基础题。6如图,平行板电容器两极板的间距为d,极板与水平面成45角,上极板带正电。一电荷量为q(q0)的粒子在电容器中靠近下极板处,以初动能Ek0竖直向上射出。不计重力,极板尺寸足够大。若粒子能打到上极板,则两极板间电场强度的最大值为A B C D【答案】B【考点定位】带电粒子在电场中的运动、运动合成与分解【名师点睛】本题关键是明确粒子的受力情况和运动情况,然后根据类平抛运动的分位移公式和动能定理
7、处理,要明确当电场强度最大时,是粒子的速度平行与上极板,而不是零。二、多项选择题:本题共4小题,每小题5分。在每小题给出的四个选项中,有多个选项是符合题目要求的。全部选对的得5分,选对但不全的得3分,有选错的得0分。7通过观测冥王星的卫星,可以推算出冥王星的质量。假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。这两个物理量可以是A卫星的速度和角速度 B卫星的质量和轨道半径C卫星的质量和角速度 D卫星的运行周期和轨道半径【答案】AD【解析】根据线速度和角速度可以求出半径,根据万有引力提供向心力则有,整理可得,故选项A正确;由于卫星的质量m可约掉,故选项
8、BC错误;若知道卫星的运行周期和轨道半径,则,整理得,故选项D正确。学科&网【考点定位】万有引力定律的应用【名师点睛】解决本题的关键掌握万有引力提供向心力这一理论,知道线速度、角速度、周期、向心加速度与轨道半径的关系。8如图(a)所示,扬声器中有一线圈处于磁场中,当音频电流信号通过线圈时,线圈带动纸盆振动,发出声音。俯视图(b)表示处于辐射状磁场中的线圈(线圈平面即纸面),磁场方向如图中箭头所示。在图(b)中A当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向里B当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向外C当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向里D当电流沿逆时
9、针方向时,线圈所受安培力的方向垂直于纸面向外【答案】BC【考点定位】安培力【名师点睛】解决本题的关键掌握安培力方向的判定,明确安培力产生的条件,熟练应用左手定则判断安培力的方向。9图(a)所示,理想变压器的原、副线圈的匝数比为4:1,RT为阻值随温度升高而减小的热敏电阻,R1为定值电阻,电压表和电流表均为理想交流电表。原线圈所接电压u随时间t按正弦规律变化,如图(b)所示。下列说法正确的是A变压器输入、输出功率之比为4:1B变压器原、副线圈中的电流强度之比为1:4Cu随t变化的规律为u=51sin(50t)(国际单位制)Z_X_X_KD若热敏电阻RT的温度升高,则电压表的示数不变,电流表的示数
10、变大【答案】BD【考点定位】变压器的构造和原理【名师点睛】根据图象准确找出已知量,是对学生认图的基本要求,准确掌握理想变压器的特点及电压、电流比与匝数比的关系,是解决本题的关键。10如图,一带正电的点电荷固定于O点,两虚线圆均以O为圆心,两实线分别为带电粒子M和N先后在电场中运动的轨迹,a、b、c、d、e为轨迹和虚线圆的交点。不计重力。下列说法说法正确的是AM带负电荷,N带正电荷BM在b点的动能小于它在a点的动能CN在d点的电势能等于它在e点的电势能DN在从c点运动到d点的过程中克服电场力做功【答案】ABC【考点定位】等势面、电势能【名师点睛】本题是轨迹问题,首先要根据弯曲的方向判断出带电粒子
11、所受电场力方向,确定是排斥力还是吸引力。由动能定理分析动能和电势能的变化是常用的思路。第卷本卷包括必考题和选考题两部分。第1114题为必考题,每个试题考生都必须作答。第1517题为选考题,考生根据要求作答。三、实验题:本题共2小题,第11题6分,第12题9分。把答案写在答题卡中指定的答题处,不要求写出演算过程。11某同学利用图(a)所示的实验装置探究物块速度随时间的变化。物块放在桌面上,细绳的一端与物块相连,另一端跨过滑轮挂上钩码。打点计时器固定在桌面左端,所用交流电源频率为50 Hz。纸带穿过打点计时器连接在物块上。启动打点计时器,释放物块,物块在钩码的作用下拖着纸带运动。打点计时器打出的纸
12、带如图(b)所示(图中相邻两点间有4个点未画出)。根据实验数据分析,该同学认为物块的运动为匀加速运动。回答下列问题:(1)在打点计时器打出B点时,物块的速度大小为_m/s。在打出D点时,物块的速度大小为_m/s;(保留两位有效数字)(2)物块的加速度大小为_m/s2。(保留两位有效数字)【答案】(1)0.56 0.96 (2)2.0【解析】(1)根据匀变速直线运动的中间时刻的速度等于该过程的平均速度,可知vB=102 m/s=0.56 m/s,vB=102 m/s=0.96 m/s;(2)由逐差法可得加速度a=102 m/s2=2.0 m/s2。学科&网【考点定位】探究小车速度随时间变化的规律
13、【名师点睛】根据匀变速直线运动中中间时刻的速度等于该过程中的平均速度,可以求出打纸带上小车的瞬时速度大小,然后在速度公式求加速度即可。12某同学改装和校准电压表的电路图如图所示,图中虚线框内是电压表的改装电路。(1)已知表头G满偏电流为100 A,表头上标记的内阻值为900 。R1、R2和R3是定值电阻。利用R1和表头构成1 mA的电流表,然后再将其改装为两个量程的电压表。若使用a、b两个接线柱,电压表的量程为1 V;若使用a、c两个接线柱,电压表的量程为3 V。则根据题给条件,定值电阻的阻值应选R1=_,R2=_,R3=_。(2)用量程为3 V,内阻为2 500 的标准电压表对改装表3 V挡
14、的不同刻度进行校准。所用电池的电动势E为5 V;滑动变阻器R有两种规格,最大阻值分别为50 和5 k。为方便实验中调节电压,图中R应选用最大阻值为_的滑动变阻器。(3)校准时,在闭合开关S前,滑动变阻器的滑动端P应靠近_(填“M”或“N”)端。(4)若由于表头G上标记的内阻值不准,造成改装后电压表的读数比标准电压表的读数偏小,则表头G内阻的真实值_(填“大于”或“小于”)900 。【答案】(1)100 910 2 000 (2)50 (3)M (4)大于【考点定位】把电流表改装成电压表【名师点睛】本题考查了求电阻阻值、实验器材的选择、电路故障分析,知道电流表的改装原理、分析清楚电路结构、应用串
15、并联电路特点与欧姆定律即可正确解题。四、计算题:本题共2小题,第13题9分,第14题14分。把解答写在答题卡中指定的答题处,要求写出必要的文字说明、方程式和演算步骤。13水平地面上有质量分别为m和4m的物A和B,两者与地面的动摩擦因数均为。细绳的一端固定,另一端跨过轻质动滑轮与A相连,动滑轮与B相连,如图所示。初始时,绳出于水平拉直状态。若物块A在水平向右的恒力F作用下向右移动了距离s,重力加速度大小为g。求:(1)物块B克服摩擦力所做的功;(2)物块A、B的加速度大小。【答案】(1)2mgs (2) 【考点定位】牛顿第二定律、功、匀变速直线运动【名师点睛】采用整体法和隔离法对物体进行受力分析
16、,抓住两物体之间的内在联系,绳中张力大小相等、加速度大小相等,根据牛顿第二定律列式求解即可。解决本题的关键还是抓住联系力和运动的桥梁加速度。14如图,A、C两点分别位于x轴和y轴上,OCA=30,OA的长度为L。在OCA区域内有垂直于xOy平面向里的匀强磁场。质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0。不计重力。(1)求磁场的磁感应强度的大小;(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;(3)若粒子从某点射入磁场后,
17、其运动轨迹与AC边相切,且在磁场内运动的时间为,求粒子此次入射速度的大小。【答案】(1) (2)2t0 (3) 【考点定位】带电粒子在磁场中的运动【名师点睛】对于带电粒子在磁场中运动类型,要画出轨迹,善于运用几何知识帮助分析和求解,这是轨迹问题的解题关键。五、选考题:请考生从第1517题中任选二题作答。如果多做,则按所做的第一、二题计分。15选修3-3(12分)(1)(4分)一定量的理想气体从状态M可以经历过程1或者过程2到达状态N,其pV图象如图所示。在过程1中,气体始终与外界无热量交换;在过程2中,气体先经历等容变化再经历等压变化。对于这两个过程,下列说法正确的是_。(填入正确答案标号。选
18、对1个得2分,选对2个得3分,选对3个得4分;有选错的得0分)A气体经历过程1,其温度降低B气体经历过程1,其内能减小C气体在过程2中一直对外放热D气体在过程2中一直对外做功E气体经历过程1的内能改变量与经历过程2的相同【答案】ABE【考点定位】气体的等容变化和等压变化、热力学第一定律、气体的等温变化【名师点睛】本题考查了判断气体吸热与放热情况、气体内能如何变化,分析清楚图示图象、由理想气体状态方程与热力学第一定律即可正确解题。(2)(8分)如图,密闭汽缸两侧与一U形管的两端相连,汽缸壁导热;U形管内盛有密度为=7.5102 kg/m3的液体。一活塞将汽缸分成左、右两个气室,开始时,左气室的体
19、积是右气室的体积的一半,气体的压强均为p0=4.5103 Pa。外界温度保持不变。缓慢向右拉活塞使U形管两侧液面的高度差h=40 cm,求此时左、右两气室的体积之比。取重力加速度大小g=10 m/s2,U形管中气体的体积和活塞拉杆的体积忽略不计。【答案】1:1【解析】设初始状态时汽缸左气室的体积为V01,右气室的体积为V02;当活塞至汽缸中某位置时,左、右气室的压强分别为p1、p2,体积分别为V1、V2,由玻意耳定律得p0V01=p1V1p0V02=p2V2依题意有V01+V02=V1+V2由力的平衡条件有p2p1=gh联立式,并代入题给数据得由此解得(另一解不合题意,舍去)由式和题给条件得V
20、1:V2=1:1. 学科&网【考点定位】理想气体的状态方程、封闭气体压强【名师点睛】本题考查了求气体体积,应用玻意耳定律即可正确解题,求出气体的压强是正确解题的关键。16选修3-4(12分)(1)(4分)下列说法正确的是_。(填入正确答案标号。选对1个得2分,选对2个得3分,选对3个得4分;有选错的得0分)A在同一地点,单摆做简谐振动的周期的平方与其摆长成正比B弹簧振子做简谐振动时,振动系统的势能与动能之和保持不变C在同一地点,当摆长不变时,摆球质量越大,单摆做简谐振动的周期越小D系统做稳定的受迫振动时,系统振动的频率等于周期性驱动力的频率E已知弹簧振子初始时刻的位置及其振动周期,就可知振子在
21、任意时刻运动速度的方向【答案】ABD【考点定位】简谐运动、受迫振动【名师点睛】本题关键抓住简谐运动的周期性,分析时间与周期的关系分析振子的位移变化,要掌握加速度与位移的关系,根据计时开始时刻的加速度及方向解题。(2)(8分)如图,半径为R的半球形玻璃体置于水平桌面上,半球的上表面水平,球面与桌面相切于A点。一细束单色光经球心O从空气中摄入玻璃体内(入射面即纸面),入射角为45,出射光线射在桌面上B点处。测得AB之间的距离为。现将入射光束在纸面内向左平移,求射入玻璃体的光线在球面上恰好发生全反射时,光束在上表面的入射点到O点的距离。不考虑光线在玻璃体内的多次反射。【答案】R【考点定位】折射定律、
22、全反射【名师点睛】本题是简单的几何光学问题,其基础是作出光路图,根据几何知识确定入射角与折射角,根据折射定律求解。17选修3-5(12分)(1)(4分)下列说法正确的是_。(填入正确答案标号。选对1个得2分,选对2个得3分,选对3个得4分;有选错的得0分)A爱因斯坦在光的粒子性的基础上,建立了光电效应方程B康普顿效应表明光子只具有能量,不具有动量C玻尔的原子理论成功地解释了氢原子光谱的实验规律D卢瑟福根据粒子散射实验提出了原子的核式结构模型E德布罗意指出微观粒子的动量越大,其对应的波长就越长【答案】ACD【考点定位】光电效应、康普顿效应、波尔的原子理论、核式结构模型、德布罗意波【名师点睛】本题
23、考查了光电效应、康普顿效应、波尔的原子理论、核式结构模型、德布罗意波等基础知识点,难度不大,关键要熟悉教材。(2)(8分)如图,物块A通过一不可伸长的轻绳悬挂在天花板下,初始时静止;从发射器(图中未画出)射出的物块B沿水平方向与A相撞,碰撞后两者粘连在一起运动;碰撞前B的速度的大小v及碰撞后A和B一起上升的高度h均可由传感器(图中未画出)测得。某同学以h为纵坐标,v2为横坐标,利用实验数据作直线拟合,求得该直线的斜率为k=1.92 10-3 s2/m。已知物块A和B的质量分别为mA=0.400 kg和mB=0.100 kg,重力加速度大小g=9.80 m/s2。(i)若碰撞时间极短且忽略空气阻力,求hv2直线斜率的理论值k0;(ii)求k值的相对误差(=100%,结果保留1位有效数字)。【答案】(i)2.04103 s2/m (ii)6%.【考点定位】动量守恒定律、机械能守恒定律【名师点睛】本题考查动量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒,然后才能列式求解。