1、专题:二次函数与反比例应用问题题型讲练【例1】某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个设销售价格每个降低x元(x为偶数),每周销售量为y个(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?变式训练1:1某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t
2、(天)之间的函数关系式如图1所示,日销售量y(千克)与时间第t(天)之间的函数关系如2所示.图1 图2(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.【例2】如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m按照图中所示的直角坐标系,抛物线可以用y=x2bxc表示,且抛物线上的点C到OB的水平距离3m,到地面OA的距离为
3、8.5m。(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?变式训练2:1里约奥运会上,中国女排获得了奥运冠军如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如
4、图所示的平面直角坐标系(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围【例3】课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:
5、当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明变式训练3:1 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的三块矩形区域,而且这三块矩形区域的面积相等设BC的长度为x m,矩形区域ABCD的面积为y m2(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) 当BC为多
6、长时,长方形面积达300m2?(3) x为何值时,y有最大值?最大值是多少?【例4】若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0x3时,y2的最大值变式训练4:1如图,函数y1x与抛物线y2ax2bxc图象交于P、Q两点,则函数yax2(b1)xc的图象可能是( )2 如图,已知反比例函数y与一次函数yk2xb的图象交于点A(1,8)、
7、B(4,m).(1)求k1、k2、b的值;(2)求AOB的面积;(3)若M(x1,y1)、N(x2,y2)是比例函数yk1/x图象上的两点,且x1x2,y1y2,指出点M、N各位于哪个象限,并简要说明理由.二次函数与反比例应用问题专题训练1教练对小明推铅球的录像(如图)进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y(x4)23,由此可知小明的铅球成绩为 m2如图,反比例函数y=(k0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,SBEF=2,则k=_3函数y=x2+bx+c与y=x的图象如图所示,有以下结论:b24c0;b+c+1=0;3b+c+6=0
8、;当1x3时,x2+(b1)x+c0其中正确的序号为 4如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+10的解集是_5设反比例函数y=与一次函数y=2x6的图象的交点为 (a,b),则+ = 6某种电缆在空中架设时,两端挂起的电缆下垂都近似抛物线y=x2的形状今在一个坡度为1:5的斜坡上,按水平距离间隔50米架设两固定电缆的位置离地面高度为20米的塔柱(如图),这种情况下在竖直方向上,下垂的电缆与地面的最近距离为 米7如图,反比例函数y=(x0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E若四边形ODBE的面积为6,则k的值为_8某电
9、商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a0)未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元通过市场调研发现,该时装单价每降1元,每天销量增加4件在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为_9如图,A、B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,ACy轴于点E,BDy轴于点F,AC=2,BD=3,EF=,则k2k1的值是_10某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计
10、划中的建筑材料可建围墙的总长为50m设饲养室长为x(m),占地面积为y(m2)(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了”请你通过计算,判断小敏的说法是否正确11 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x 40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:单位
11、(元)销售单价x销售量y(件)销售玩具获得利润w(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?12 某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示:销售量p(件)P=50x销售单价q(元/件)当1x20时,q=30+x当21x40时,q=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式。(3)这40天中该网店第几天获得的利润最大?最大利润是多少?