收藏 分享(赏)

高二人教B版数学选修1-1课件1-1-2量词30张.ppt

上传人:a**** 文档编号:489463 上传时间:2025-12-08 格式:PPT 页数:30 大小:621KB
下载 相关 举报
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第1页
第1页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第2页
第2页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第3页
第3页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第4页
第4页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第5页
第5页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第6页
第6页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第7页
第7页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第8页
第8页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第9页
第9页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第10页
第10页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第11页
第11页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第12页
第12页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第13页
第13页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第14页
第14页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第15页
第15页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第16页
第16页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第17页
第17页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第18页
第18页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第19页
第19页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第20页
第20页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第21页
第21页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第22页
第22页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第23页
第23页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第24页
第24页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第25页
第25页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第26页
第26页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第27页
第27页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第28页
第28页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第29页
第29页 / 共30页
高二人教B版数学选修1-1课件1-1-2量词30张.ppt_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1知识与技能理解全称量词、存在量词以及全称命题、存在性命题,并能判断命题的真假2过程与方法通过生活和数学中的丰富实例,理解全称量词与存在量词的意义3情感态度与价值观通过本节的学习认识到两种命题在刻画现实问题、数学问题中的作用,从而激发学生的创新精神本节重点:理解全称量词与存在量词的概念本节难点:判断全称命题与存在性命题的真假1用集合的观点看,全称命题就是陈述某集合所有元素都具有某种性质的命题,是全体都具有的性质而存在性命题是陈述在某集合中一些元素具有某种性质的命题,是指个体具有的性质2全称命题、存在性命题就是含有全称量词、存在量词的命题,学会自然语言与符号语言的转化3同一个全称命题、存在性命题

2、,由于自然语言的不同,可以有不同的表述方法1短语“所有”在陈述句中表示所述事物的全体,逻辑中通常叫做,并用符号“”表示,含有全称量词的命题,叫做2短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做,并用符号“”表示,含有存在量词的命题,叫做3要判定一个全称命题为真,必须限定集合M中的每一个x验证p(x)成立,一般用代数推理的方法加以证明,要判定一个全称命题为假,只须即可全称量词全称命题存在量词存在性命题举一个反例4要判定一个存在性命题为真,只要在限定集合M中,能够找一个xx0,使成立即可否则,这一存在性命题为假p(x0)例1 判断下列全称命题的真假:(1)

3、所有的质数是奇数(2)xR,x210.(3)对任何一个无理数x,x2也是无理数说明 要判定全称命题“xM,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称命题为假命题(2010湖南文,2)下列命题中的假命题是()AxR,lgx0BxR,tanx1CxR,x30 DxR,2x0答案C解析本题主要考查全称命题和存在性命题真假的判断对于选项C,xR,x30,故C是假命题.例2 判定下列存在性命题的真假:(1)存在一个实数x,使x2x10.(2)存在两条相交直线垂直于同一平面(3)存在相似三角形对应边相等(2)假因为

4、垂直于同一平面的两直线平行,所以不存在两条相交直线垂直于同一平面(3)真因为全等三角形一定是相似三角形,所以当两个相似三角形是全等三角形时对应边相等说明要判定一个存在性命题“xM,p(x)”是真命题,只需在集合M中找一个元素x0,使p(x0)成立即可,如果在集合M中,使p(x)成立的元素x不存在,那么这个存在性命题为假命题判断下列存在性命题的真假(1)xZ,x31;(2)xQ,x25.解析(1)由于1Z,当x1时,能使x31成立所以命题“xZ,x31”是真命题例3试用不同的表述写出全称命题“矩形都是平行四边形”解析对所有的矩形x,x都是平行四边形;对一切矩形x,x都是平行四边形;每一个矩形x都

5、是平行四边形;任一个矩形x都是平行四边形;凡是矩形x都是平行四边形设集合S矩形,p(x):“x是平行四边形”则命题为“xS,p(x)”规律方法 同一个全称命题或存在性命题,由于自然语言的不同,可以有不同的表述方法现列表总结于下,在实际应用中可以灵活地选择.命题全称命题“xA,p(x)”存在性命题“xA,p(x)”表述方法所有的xA,p(x)成立;对一切xA,p(x)成立;对每一个xA,p(x)成立;任选一个xA,p(x)成立;凡xA,都有p(x)成立.存在xA,使p(x)成立;至少有一个xA,使p(x)成立;对有些xA,使p(x)成立;对某个xA,使p(x)成立;有一个xA,使p(x)成立.设

6、集合S三角形,p(x):“内角和为180”试用不同的表述写出全称命题“xS,p(x)”解析对所有的三角形x,x的内角和为180;对一切三角形x,x的内角和为180;每一个三角形x的内角和为180;任一个三角形x的内角和为180;凡是三角形,它的内角和为180.一、选择题1下列命题中是存在性命题的是()AxR,x20BxR,x20C平行四边形的对边不平行D矩形的任一组对边都不相等答案B2下列全称命题中真命题的个数为()末位是0的整数,可以被2整除角平分线上的点到这个角的两边的距离相等正四面体中两侧面的夹角相等A1B2C3D0答案C3在下列存在性命题中假命题的个数是()有的实数是无限不循环小数有些三角形不是等腰三角形有的菱形是正方形A0B1C2D3答案A解析因为三个命题都是真命题,所以假命题的个数为0.4下列命题中是真命题的是()AxR,x213DxQ,x2Z答案B解析当x1时,3x14是整数,故选B.二、填空题5给出下列命题:所有的单位向量都相等;对任意实数x,均有x22x;不存在实数x,使x22x30.其中所有正确命题的序号为_答案三、解答题6用符号“”与“”表示下列命题,并判断真假(1)不论m取什么实数,方程x2xm0必有实根;(2)存在一个实数x,使x2x40.解析(1)mR,方程x2xm0必有实根当m1时,方程无实根,是假命题(2)xR,使x2x40,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1