1、2012届高考数学压轴题预测专题2 数列1. 已知函数,是方程f(x)0的两个根,是f(x)的导数;设,(n1,2,) (1)求的值; (2)证明:对任意的正整数n,都有a;解析:(1),是方程f(x)0的两个根,; (2),有基本不等式可知(当且仅当时取等号),同,样,(n1,2,),2. 已知数列的首项(a是常数,且),(),数列的首项,()。 (1)证明:从第2项起是以2为公比的等比数列;(2)设为数列的前n项和,且是等比数列,求实数的值;(3)当a0时,求数列的最小项。分析:第(1)问用定义证明,进一步第(2)问也可以求出,第(3)问由的不同而要分类讨论。解:(1)(n2)由得, ,即
2、从第2项起是以2为公比的等比数列。(2)当n2时,是等比数列, (n2)是常数,3a+4=0,即 。(3)由(1)知当时,所以,所以数列为2a+1,4a,8a-1,16a,32a+7,显然最小项是前三项中的一项。当时,最小项为8a-1;当时,最小项为4a或8a-1;当时,最小项为4a;当时,最小项为4a或2a+1;当时,最小项为2a+1。 点评:本题考查了用定义证明等比数列,分类讨论的数学思想,有一定的综合性。考点二:求数列的通项与求和3. 已知数列中各项为: 12、1122、111222、 (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n项之和Sn . 分析:先要通过
3、观察,找出所给的一列数的特征,求出数列的通项,进一步再求和。解:(1) 记:A = , 则A=为整数 = A (A+1) , 得证 (2) 点评:本题难点在于求出数列的通项,再将这个通项“分成” 两个相邻正数的积,解决此题需要一定的观察能力和逻辑推理能力。4. 已知数列满足,()求数列的通项公式;()设,求数列的前项和;()设,数列的前项和为求证:对任意的,分析:本题所给的递推关系式是要分别“取倒”再转化成等比型的数列,对数列中不等式的证明通常是放缩通项以利于求和。解:(),又,数列是首项为,公比为的等比数列 ,即.() (), 当时,则, 对任意的, 点评:本题利用转化思想将递推关系式转化成
4、我们熟悉的结构求得数列的通项,第三问不等式的证明要用到放缩的办法,这将到下一考点要重点讲到。考点三:数列与不等式的联系5. 已知为锐角,且,函数,数列an的首项. 求函数的表达式; 求证:;分析:本题是借助函数给出递推关系,第(2)问的不等式利用了函数的性质,第(3)问是转化成可以裂项的形式,这是证明数列中的不等式的另一种出路。解: 又为锐角 都大于0 点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(3)问不等式的证明更具有一般性。6. 已知数列满足()求数列的通项公式;()若数列满足,证明:是等差数列;()证明:分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关
5、键在于找出连续三项间的关系;第(3)问关键在如何放缩。解:(1),故数列是首项为2,公比为2的等比数列。,(2),得,即得,即所以数列是等差数列(3)设,则 点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。7. 已知函数,数列满足, ; 数列满足, .求证:()() ()若则当n2时,.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。解:()先用数学归纳法证明,.(1)当n=1时,由已知得结论成立;(2)假设当n=k时,结论成立,即.则当n=k+1时,因为0x1时,所以f(x
6、)在(0,1)上是增函数.又f(x)在上连续,所以f(0)f()f(1),即0. 故当n=k+1时,结论也成立. 即对于一切正整数都成立.又由, 得,从而.综上可知()构造函数g(x)=-f(x)= , 0xg(0)=0.因为,所以,即0,从而() 因为 ,所以, , 所以 , 由()知:, 所以= ,因为, n2, 所以 = .由 两式可知: . 点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。考点四:数列与函数、向量等的联系8. 已知函数f(x)=,设正项数列满足=l, (1)写出、的值; (2)试比较与的大小,并说明理由;(3)设数列满足=,记Sn=证
7、明:当n2时,Sn(2n1)分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。解:(1),因为所以(2)因为所以,因为所以与同号,因为,即(3)当时,所以,所以 点评:本题是函数、不等式的综合题,是高考的难点热点。9. 在平面直角坐标系中,已知三个点列An,Bn,Cn,其中 ,满足向量与向量共线,且点(B,n)在方向向量为(1,6)的线上 (1)试用a与n表示; (2)若a6与a7两项中至少有一项是an的最小值,试求a的取值范围。分析:第(1)问实际上是求数列的通项;第(2)问利用二次函数中求最小值的方式来解决。解:(1)又Bn在方向向量为(1,6)的直线上, (2)二次函数是开口向上,对称轴为的抛物线又因为在a6与a7两项中至少有一项是数列an的最小项,对称轴 点评:本题是向量、二次函数、不等式知识和交汇题,要解决好这类题是要有一定的数学素养的。