1、高考资源网() 您身边的高考专家课时跟踪检测(六)函数的奇偶性及周期性一、选择题1(2015河南信阳二模)函数f(x)lg|sin x|是()A最小正周期为的奇函数B最小正周期为2的奇函数C最小正周期为的偶函数D最小正周期为2的偶函数2(2015大连测试)下列函数中,与函数y3|x|的奇偶性相同,且在(,0)上单调性也相同的是()AyBylog2|x|Cy1x2 Dyx313(2015唐山统考)f(x)是R上的奇函数,当x0时,f(x)x3ln(1x)则当x0时,f(x)()Ax3ln(1x)Bx3ln(1x)Cx3ln(1x) Dx3ln(1x)4(2015长春调研)已知函数f(x),若f(
2、a),则f(a)()A. BC. D5(2015甘肃天水一模)已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)f(x1),若f(2)2,则f(2 014)的值为()A2 B0C2 D26已知f(x)是定义在R上的奇函数,当x0时,f(x)x22x,若f(2a2)f(a),则实数a的取值范围是()A(,1)(2,) B(1,2)C(2,1) D(,2)(1,)二、填空题7若函数f(x)x2|xa|为偶函数,则实数a_.8(2015江苏南通二模)设定义在R上的函数f(x)同时满足以下条件:f(x)f(x)0;f(x)f(x2);当0x1时,f(x)2x1,则ff(1)ff(2)f
3、_.9已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)g(x)x,则f(1),g(0),g(1)之间的大小关系是_10设f(x)是定义在R上且周期为2的函数,在区间1,1上,f(x)其中a,bR.若ff,则a3b的值为_三、解答题11已知函数f(x)是奇函数(1)求实数m的值;(2)若函数f(x)在区间1,a2上单调递增,求实数a的取值范围12设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时,f(x)x.(1)求f()的值;(2)当4x4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(,)内函数f(x)的单调区间答 案1选C易知函数的定义域为x|xk,kZ
4、,关于原点对称,又f(x)lg |sin(x)|lg |sin x|lg |sin x|f(x),所以f(x)是偶函数,又函数y|sin x|的最小正周期为,所以函数f(x)lg|sin x|是最小正周期为的偶函数2选C函数y3|x|为偶函数,在(,0)上为增函数,选项B的函数是偶函数,但其单调性不符合,只有选项C符合要求3选C当x0时,x0,f(x)(x)3ln(1x),f(x)是R上的奇函数,当x0时,f(x)f(x)(x)3ln(1x),f(x)x3ln(1x)4选C根据题意,f(x)1,而h(x)是奇函数,故f(a)1h(a)1h(a)21h(a)2f(a)2,故选C.5选Ag(x)f
5、(x1),g(x)f(x1)又g(x)f(x1),f(x1)f(x1),f(x2)f(x),f(x4)f(x2)f(x),则f(x)是以4为周期的周期函数,所以f(2 014)f(2)2.6.选Cf(x)是奇函数,当x0时,f(x)x22x.作出函数f(x)的大致图象如图中实线所示,结合图象可知f(x)是R上的增函数,由f(2a2)f(a),得2a2a,解得2a1.7解析:f(x)f(x)对于xR恒成立,|xa|xa|对于xR恒成立,两边平方整理得ax0对于xR恒成立,故a0.答案:08解析:依题意知:函数f(x)为奇函数且周期为2,ff(1)ff(2)fff(1)ff(0)fff(1)ff(
6、0)fff(1)f(0)21211201.答案:9解析:在f(x)g(x)x中,用x替换x,得f(x)g(x)2x,由于f(x),g(x)分别是定义在R上的奇函数和偶函数,所以f(x)f(x),g(x)g(x),因此得f(x)g(x)2x.于是解得f(x),g(x),于是f(1),g(0)1,g(1),故f(1)g(0)g(1)答案:f(1)g(0)g(1)10解析:因为f(x)是定义在R上且周期为2的函数,所以ff,且f(1)f(1),故ff,从而a1,即3a2b2.由f(1)f(1),得a1,即b2a.由得a2,b4,从而a3b10.答案:1011解:(1)设x0,所以f(x)(x)22(
7、x)x22x.又f(x)为奇函数,所以f(x)f(x),于是x0时,f(x)x22xx2mx,所以m2.(2)要使f(x)在1,a2上单调递增,结合f(x)的图象知所以1a3,故实数a的取值范围是(1,312解:(1)由f(x2)f(x),得f(x4)f(x2)2f(x2)f(x),f(x)是以4为周期的周期函数f()f(14)f(4)f(4)(4)4.(2)由f(x)是奇函数与f(x2)f(x),得f(x1)2f(x1)f(x1),即f(1x)f(1x)从而可知函数yf(x)的图象关于直线x1对称又当0x1时,f(x)x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示设当4x4时,f(x)的图象与x轴围成的图形面积为S,则S4SOAB44.(3)函数f(x)的单调递增区间为4k1,4k1(kZ),单调递减区间为4k1,4k3(kZ)- 5 - 版权所有高考资源网