1、专题24 利用导数解决双变量问题一、单选题 1设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD2已知函数,且有两个极值点,其中,则的最小值为( )ABCD3已知函数,若,其中,则的最大值为( )AB CD4设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD5已知函数,实数,满足若,使得成立,则的最大值为( )A3B4C5D二、解答题6已知函数()求函数的图象在点处的切线方程;()若存在两个不相等的数,满足,求证:7已知函数,为的导函数.(1)当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间和极值;(2)当时,求证:对任意的且,有.8已知函数.其中为常数.(
2、1)若函数在定义域内有且只有一个极值点,求实数的取值范围;(2)已知,是函数的两个不同的零点,求证:.9已知函数,设(1)若,求的最大值;(2)若有两个不同的零点,求证:.10已知函数,其中.(1)若在上存在极值点,求a的取值范围;(2)设,若存在最大值,记为,则当时,是否存在最大值?若存在,求出其最大值;若不存在,请说明理由11已知函数,其中.(1)若函数的图象与直线在第一象限有交点,求的取值范围.(2)当时,若有两个零点,求证:.12已知函数.(1)若在单调递增,求a的值;(2)当时,设函数的最小值为,求函数的值域.13已知函数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:.14
3、已知函数(1)当时,求函数的单调区间;(2)当时,函数有三个不同的零点,求证:15已知函数,其中为自然对数的底数.(1)证明:在上单调递减,上单调递增;(2)设,函数,如果总存在,对任意,都成立,求实数的取值范围.16已知函数,其中,为常数(1)若函数在定义域内有且只有一个极值点,求实数的取值范围;(2)已知,是函数的两个不同的零点,求证:17已知函数,既存在极大值,又存在极小值.(1)求实数的取值范围;(2)当时,分别为的极大值点和极小值点.且,求实数的取值范围.18已知函数有两个零点,.(1)求实数的取值范围;(2)求证:.19已知函数,(1)若函数在上单调递增,求实数的取值范围;(2)当
4、时,若与的图象有两个交点,试比较与的大小(取为2.8,取为0.7,取为1.4)20已知函数()当时,求证:()设,若,使得成立,求实数a的取值范围21设函数(1)当时,试讨论函数的单调性;(2)设,记,当时,若函数与函数有两个不同交点,设线段的中点为,试问是否为的根?说明理由22已知函数(1)若函数在区间内是单调递增函数,求实数a的取值范围;(2)若函数有两个极值点,且,求证:(注:为自然对数的底数)23已知函数(1)当时,求函数的单调区间;(2)若,函数的最小值为,求的值域.24已知函数.(1)若在定义域单调递增,求a的取值范围;(2)设,m,n分别是的极大值和极小值,且,求S的取值范围.25已知函数. (1)求函数的单调递增区间; (2)任取,函数对任意,恒有成立,求实数的取值范围.