ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:305.34KB ,
资源ID:253730      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-253730-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届新高考数学培优专练 专题24 利用导数解决双变量问题(学生版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023届新高考数学培优专练 专题24 利用导数解决双变量问题(学生版).docx

1、专题24 利用导数解决双变量问题一、单选题 1设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD2已知函数,且有两个极值点,其中,则的最小值为( )ABCD3已知函数,若,其中,则的最大值为( )AB CD4设函数,函数,若对于,使成立,则实数的取值范围是( )ABCD5已知函数,实数,满足若,使得成立,则的最大值为( )A3B4C5D二、解答题6已知函数()求函数的图象在点处的切线方程;()若存在两个不相等的数,满足,求证:7已知函数,为的导函数.(1)当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间和极值;(2)当时,求证:对任意的且,有.8已知函数.其中为常数.(

2、1)若函数在定义域内有且只有一个极值点,求实数的取值范围;(2)已知,是函数的两个不同的零点,求证:.9已知函数,设(1)若,求的最大值;(2)若有两个不同的零点,求证:.10已知函数,其中.(1)若在上存在极值点,求a的取值范围;(2)设,若存在最大值,记为,则当时,是否存在最大值?若存在,求出其最大值;若不存在,请说明理由11已知函数,其中.(1)若函数的图象与直线在第一象限有交点,求的取值范围.(2)当时,若有两个零点,求证:.12已知函数.(1)若在单调递增,求a的值;(2)当时,设函数的最小值为,求函数的值域.13已知函数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:.14

3、已知函数(1)当时,求函数的单调区间;(2)当时,函数有三个不同的零点,求证:15已知函数,其中为自然对数的底数.(1)证明:在上单调递减,上单调递增;(2)设,函数,如果总存在,对任意,都成立,求实数的取值范围.16已知函数,其中,为常数(1)若函数在定义域内有且只有一个极值点,求实数的取值范围;(2)已知,是函数的两个不同的零点,求证:17已知函数,既存在极大值,又存在极小值.(1)求实数的取值范围;(2)当时,分别为的极大值点和极小值点.且,求实数的取值范围.18已知函数有两个零点,.(1)求实数的取值范围;(2)求证:.19已知函数,(1)若函数在上单调递增,求实数的取值范围;(2)当

4、时,若与的图象有两个交点,试比较与的大小(取为2.8,取为0.7,取为1.4)20已知函数()当时,求证:()设,若,使得成立,求实数a的取值范围21设函数(1)当时,试讨论函数的单调性;(2)设,记,当时,若函数与函数有两个不同交点,设线段的中点为,试问是否为的根?说明理由22已知函数(1)若函数在区间内是单调递增函数,求实数a的取值范围;(2)若函数有两个极值点,且,求证:(注:为自然对数的底数)23已知函数(1)当时,求函数的单调区间;(2)若,函数的最小值为,求的值域.24已知函数.(1)若在定义域单调递增,求a的取值范围;(2)设,m,n分别是的极大值和极小值,且,求S的取值范围.25已知函数. (1)求函数的单调递增区间; (2)任取,函数对任意,恒有成立,求实数的取值范围.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1