1、3.4生活中的优化问题举例【学习目标】1进一步理解导数的概念,会利用导数概念形成过程中的基本思想分析一些实际问题,并建立它们的导数模型;2掌握用导数解决实际中简单的最优化问题,构建函数模型,求函数的最值.【重点难点】利用导数解决生活中的一些优化问题【预习案】【导学提示】(预习教材P101 P102,找出疑惑之处)任务一:函数y=2x33x212x+5在0,3上的最小值是_ 任务二:函数在上的最大值为_;最小值为_.【探究案】探究一:优化问题 组议:张明准备购买一套住房,最初准备选择购房一年后一次性付清房款,且付款时需加付年利率为4.8%的利息,这时正好某商业银行推出一种年利率低于的一年定期贷款
2、业务,贷款量与利率的平方成正比,比例系数为,因此他打算申请这种贷款在购房时付清房款. (1)若贷款的利率为,写出贷款量及他应支付的利息;(2)贷款利息为多少时,张明获利最大? 对议:生活中经常遇到求 、 、 等问题,这些问题通常称为优化问题. 变式:在边长为60 cm的正方形铁片的四角切去边长都为的小正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 利用导数解决优化问题的实质是 .探究二:组议:班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为,上、下两边各空,左、右两边各空.如何设计
3、海报的尺寸,才能使四周空白面积最小? 变式:如图用铁丝弯成一个上面是半圆,下面是矩形的图形,其面积为 ,为使所用材料最省,底宽应为多少? 对议:某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是分,其中是瓶子的半径,单位是厘米.已知每出售1 的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6.问(1)瓶子半径多大时,能使每瓶饮料的利润最大?(2)瓶子半径多大时,每瓶饮料的利润最小?小结:解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较相当多有关最值的实际问题用导数方法解决较简单【训练案】1. 一条长为100的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?2. 周长为20的矩形,绕一条边边旋转成一个圆柱,求圆柱体积的最大值.【自主区】【使用说明】教师书写二次备课,学生书写收获与总结