1、 预习目标:通过对比物理中的一些向量与数量之间的运算关系,引入向量与数量之间的乘法运算,同时也为该运算赋予其物理意义。预习内容:引入:位移、力、速度、加速度等都是向量,而时间、质量等都是数量,这些向量与数量的关系常常在物理公式中体现。如力与加速度的关系,位移与速度的关系。这些公式都是实数与向量间的关系。师:我们已经学习了向量的加法,请同学们作出和向量,并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?生: 师:很好!本节课我们就来讨论实数与向量的乘积问题,(板书课题:实数与向量的乘积)课内探究学案学习目标:1掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实
2、数与向量的积的运算律进行有关的计算;2理解两个向量平行的充要条件,能根据条件判断两个向量是否平行;3通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想。学习过程:1、探索研究1)定义:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?(可结合教材思考)可根据小学算术中的解释,类比规定:实数与向量的积就是,它还是一个向量,但要对实数与向量相乘的含义作一番解释才行。实数与向量的积是一个向量,记作. 它的长度和方向规定如下:(1) .(2) .2)运算律:问:求作向量和(为非零向量)并进行比较,向量与向量相等吗?(引导学生从模的大小与方向两个方
3、面进行比较)生: .师:设、为任意向量,、为任意实数,则有:(1);(2);(3).通常将(2)称为结合律,(1)(3)称为分配律。小练习1:计算:(1); (2);(3).3)向量平行的充要条件:请同学们观察,回答、有何关系?生: . 引导:若、是平行向量,能否得出?为什么?可得出吗?为什么?生: .师:由此可得向量平行的充要条件:向量与非零向量平行的充要条件是有且仅有一个实数,使得.对此定理的证明,是两层来说明的:其一,若存在实数,使,则由实数与向量乘积定义中第(2)条可知与平行,即与平行.其二,若与平行,且不妨令,设(这是实数概念)接下来看、方向如何:、同向,则,若、反向,则记,总而言之
4、,存在实数(或)使.小练习2:如图:已知,试判断与是否平行 解: 与平行.4)单位向量:单位向量:模为1的向量.向量()的单位向量:与同方向的单位向量,记作.思考:如何用来表示? 2例题与练习:题1:如图,在中,是的中点,是延长线上的点,且,是根据下列要求表示向量:(1) 用、表示; (2)用、表示. 题2:如图,在中,已知、分别是、的中点,用向量方法证明: 题3:如图,已知,求证:练习:P145 1、2、3、43课堂小结:(1)与的积还是向量,与是共线的;(2)向量平行的充要条件的内容和证明思路,也是应用该结论解决问题的思路。该结论主要用于证明点共线、求系数、证直线平行等题型问题;(3)运算律暗示我们,化简向量代数式就像计算多项式一样去合并同类项。4作业布置:练习部分 P88-89习题3 A组 2、3、4、5. P89习题3 B组 2、3.5拓展思考题:设、是两个不共线向量,已知,若、三点共线,求的值。tesoon天星om权天星om权T 天星版权tesoontesoontesoon天星