1、人教版九年级数学上册教案设计:23.1图形的旋转(2)(带答案)231图形的旋转(2)1通过观察具体实例认识旋转,探索它的基本性质2了解图形旋转的特征,并能根据这些特征绘制出旋转后的几何图形 重点:图形的旋转的基本性质及其应用难点:利用旋转的性质解决相关问题一、自学指导(10分钟)动手操作:在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(ABC),移去硬纸板(分组讨论)根据图回答下面问题:(一组推荐一人上台说明)1线段OA与OA,OB与OB,OC与OC有
2、什么关系?2AOA,BOB,COC有什么关系?3ABC与ABC的形状和大小有什么关系?点拨精讲:(1)OAOA,OBOB,OCOC,也就是对应点到旋转中心距离相等(2)AOABOBCOC,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角(3)ABC和ABC形状相同且大小相等,即全等归纳:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等二、自学检测:学生自主完成,小组内展示,点评,教师巡视(6分钟)如图,四边形ABCD是边长为1的正方形,且DE,ABF是ADE的旋转图形(1)旋转中心是哪一点?(2)旋转了多少度?(3)A
3、F的长度是多少?(4)如果连接EF,那么AEF是怎样的三角形?分析:由ABF是ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到ABF与ADE是完全重合的,所以AEF是等腰直角三角形解:(1)旋转中心是A点;(2)ABF是由ADE旋转而成的,B是D的对应点,DAB90就是旋转角;(3)AD1,DE,AE.对应点到旋转中心的距离相等且F是E的对应点,AF;(4)EAF90(与旋转角相等)且AFAE,EAF是等腰直角三角形一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果(8分钟)1如图,E是正方形AB
4、CD中CD边上任意一点,以点A为中心,把ADE顺时针旋转90,画出旋转后的图形点拨精讲:关键是确定ADE三个顶点的对应点的位置2已知线段AB和点O,画出AB绕点O逆时针旋转100后的图形作法:1.连接OA;2在逆时针方向作AOC100,在OC上截取OAOA;3连接OB;4在逆时针方向作BOD100,在OD上截取OBOB;5连接AB.线段AB就是线段AB绕点O按逆时针方向旋转100后的对应线段点拨精讲:作图应满足三要素:旋转中心、旋转角、旋转方向二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路(9分钟)1如图,ADDCBC,ADCDCB90,BPBQ,PBQ90.(1)此图能否
5、旋转某一部分得到一个正方形?(2)若能,指出由哪一部分旋转而得到的?并说明理由(3)它的旋转角多大?并指出它们的对应点解:(1)能;(2)由BCQ绕B点旋转得到理由:连接AB,易证四边形ABCD为正方形再证ABPCBQ.可知QCB可绕B点旋转与ABP重合,从而得到正方形ABCD.(3)90.点C对应点A,点Q对应点P.2如图,ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形解:(1)连接CD;(2)以CB为一边作BCE,使得BCEACD;(3)在射线CE上截取CBCB,则B即为所求的B的对应点;(4)连接DB,则DBC就是ABC绕C点旋转后的图形点拨精讲:
6、绕C点旋转,A点的对应点是D点,那么旋转角就是ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即BCBACD,又由对应点到旋转中心的距离相等,即CBCB,就可确定B的位置3如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系解:四边形ABCD、四边形AKLM是正方形,ABAD,AKAM,且BADKAM为旋转角且为90,ADM是以A为旋转中心,以BAD为旋转角,由ABK旋转而成的BKDM.点拨精讲:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明学生总结本堂课的收获与困惑(2分钟)1问题:对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?2本节课要掌握:(1)旋转的基本性质(2)旋转变换与平移、轴对称两种变换有哪些共性与区别学习至此,请使用本课时对应训练部分(10分钟)