收藏 分享(赏)

基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx

上传人:a**** 文档编号:958643 上传时间:2025-12-19 格式:DOCX 页数:25 大小:790.42KB
下载 相关 举报
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第1页
第1页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第2页
第2页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第3页
第3页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第4页
第4页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第5页
第5页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第6页
第6页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第7页
第7页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第8页
第8页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第9页
第9页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第10页
第10页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第11页
第11页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第12页
第12页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第13页
第13页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第14页
第14页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第15页
第15页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第16页
第16页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第17页
第17页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第18页
第18页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第19页
第19页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第20页
第20页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第21页
第21页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第22页
第22页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第23页
第23页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第24页
第24页 / 共25页
基础强化人教版八年级数学上册第十二章全等三角形专题训练试卷.docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十二章全等三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A2、如图,要使,直接利用三角形全等的判定

2、方法是AAASBSASCASADSSS3、作的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D为圆心,适当的长度为半径作弧使两弧在的内部相交于一点,则这个适当的长度()A大于B等于C小于D以上都不对4、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD5、下列命题的逆命题一定成立的是()对顶角相等;同位角相等,两直线平行;全等三角形的周长相等;能够完全重合的两个三角形全等ABCD6、如图,ABCADE,B=8

3、0,C=30,DAC=35,则EAC的度数为()A40B30C35D257、如图,AD是的角平分线,垂足为F,和的面积分别为60和35,则的面积为A25BCD8、如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A、C画一条射线AE,AE就是PRQ的平分线此角平分仪的画图原理是()ASSSBSASCASADAAS9、下列说法正确的是()A两个长方形是全等图形B形状相同的两个三角形全等C两个全等图形面积一定相等D所有的等边三角形都是全等三角形10、如图,RtACB中,ACB90,ABC的角平分线AD、

4、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,的三边 的长分别为,其三条角平分线交于点,则=_2、如图,ABBC于B,DCBC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP_时,形成的RtABP与RtPCD全等3、如图,在中,按以下步骤作图:以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E分别以点D、E为圆心,大于的同样长为半径作弧,两弧交于点F作射线BF交AC于点G如果,的

5、面积为18,则的面积为_4、如图,在和中,点B、E、C、F在同一条直线上,且,请你再添加一个适当的条件:_,使5、如图,在与中,若,则的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,ABAC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,DAC的平分线交DM于点F求证:AFCM2、如图,在ABC中,ABAC,BAC90,12,CEBD交BD的延长线于点E.求证:BD2CE.3、如图,已知线段a、b和,用尺规作一个三角形,使(要求:不写已知、求作、作法、只画图,保留作图痕迹)4、ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,

6、点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明5、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离请你用学过的数学知识按以下要求设计一测量方案(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示)-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型2、B【解析】【分析】根据平行线性

7、质得出ABD=CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出ABDCDB,从而推出A=C,即可得出答案【详解】,在和中,故选B【考点】本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.3、A【解析】【分析】根据作已知角的角平分线的方法即可判断【详解】因为分别以C,D为圆心画弧时,要保证两弧在的内部交于一点,所以半径应大于,故选:A【考点】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)4、A【解析】【分析

8、】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键5、C【解析】【分析】求出各命题的逆命题,然后判断真假即可【详解】解:对顶角相等,逆命题为:相等的角为对顶角,是假命题不符合题意;同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,是真命题,符合题意;全等三角形的周长相等. 逆命题为:周长相等的两个三角形全等,是假命题,不符合题

9、意;能够完全重合的两个三角形全等. 逆命题为:两个全等三角形能够完全重合,是真命题,符合题意;故逆命题成立的是,故选C【考点】本题主要考查命题与定理,熟悉掌握逆命题的求法是解本题的关键6、C【解析】【分析】根据三角形的内角和定理列式求出BAC,再根据全等三角形对应角相等可得DAE=BAC,然后根据EAC=DAE-DAC代入数据进行计算即可得解【详解】解:B=80,C=30,BAC=180-80-30=70,ABCADE,DAE=BAC=70,EAC=DAE-DAC,=70-35,=35故选C【考点】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键7、D【解析】【分析】过点D

10、作DHAC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明RtADF和RtADH全等,RtDEF和RtDGH全等,然后根据全等三角形的面积相等列方程求解即可【详解】如图,过点D作于H,是的角平分线,在和中,在和中,和的面积分别为60和35,=12.5,故选D【考点】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键8、A【解析】【分析】根据题意两个三角形的三条边分别对应相等,即可利用“边边边”证明这两个三角形全等,即可选择【详解】在和中, ,即此角平分仪的画图原理是SSS故选:A【考

11、点】本题考查了三角形全等的判定和性质根据题意找到可证明两三角形全等的条件是解答本题的关键9、C【解析】【分析】性质、大小完全相同的两个图形是全等形,根据定义解答【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C【考点】此题考查全等图形的概念及性质,熟记概念是解题的关键10、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90

12、,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P

13、在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键二、填空题1、【解析】【分析】首先过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,由OA,OB,OC是ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由ABC的三边AB、BC、CA长分别为40、50、60,即可求得SABO:SBCO:SCAO的值【详解】解:过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,OA,OB,OC是ABC的三条角平分线,OD=OE=OF,ABC的三边AB、BC

14、、CA长分别为40、50、60,SABO:SBCO:SCAO=(ABOD):(BCOF):(ACOE)=AB:BC:AC=40:50:60=故答案为:【考点】此题考查了角平分线的性质此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用2、2【解析】【分析】当BP=2时,RtABPRtPCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合ABBC、DCBC可得B=C=90,可利用SAS判定ABPPCD【详解】当BP=2时,RtABPRtPCD理由如下:BC=8,BP=2,PC=6,AB=PCABBC,DCBC,B=C=90在ABP和PCD中,ABPPCD(SAS)故答案为:

15、2【考点】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角3、27【解析】【分析】由作图步骤可知BG为ABC的角平分线,过G作GHBC,GMAB,可得GM=GH,然后再结合已知条件和三角形的面积公式求得GH,最后运用三角形的面积公式解答即可【详解】解:由作图作法可知:BG为ABC的角平分线过G作GHBC,GMABGM=GH,故答案为27【考点】本题考查了角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用

16、角平分线定理是解答本题的关键4、或或【解析】【分析】根据全等三角形的判定即可求解【详解】解:根据定理,即,可得;根据定理,即,可得;若,则,则根据定理,即可得;综上所述,添加一个适当的条件:或或,故答案为:或或(答案不唯一)【考点】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键5、40【解析】【分析】先利用HL定理证明RtABCRtDEF,得出D的度数,再根据直角三角形两锐角互余即可得出的度数【详解】解:在RtABC与RtDEF中,B=E=90,AC=DF,AB=DE,RtABCRtDEF(HL)D=A=50,DFE=90-D=90-50=40故答案为:40【考点】此题主

17、要考查直角三角形全等的HL定理理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键三、解答题1、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证【详解】,AF是的平分线,E是AC的中点,在和中,【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键2、证明见解析.【解析】【分析】延长CE、BA交于F,根据角边角定理,证明BEFBEC,进而得到CF=2CE的关系再证明ACF=1,根据角边角定理证明ACFABD,得到BD

18、=CF,至此问题得解【详解】证明:分别延长BA,CE交于点F.BECE,BEFBEC90.又12,BEBE,BEFBEC(ASA),CEFECF.1F90,ACFF90,1ACF.又ABAC,BADCAF90,ABDACF(ASA),BDCF,BD2CE【考点】本题考查了全等三角形的判定与性质解题的关键是恰当添加辅助线,构造全等三角形,将所求问题转化为全等三角形内边间的关系来解决3、见解析【解析】【分析】先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可【详解】解:先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为所求,如图所示:【考点】本题考查了复杂

19、作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作4、 (1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【解析】【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP

20、,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=

21、PA,PC=2PA【考点】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题5、(1)见解析;(2)见解析;(3)设DC=m,则AB= m【解析】【分析】本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的【详解】解:(1)见图:(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB= CD测量DC的长度即为AB的长度;(3)设DC=mBO=CO,AOB=COD,AO=DOAOBCOD(SAS)AB=CD=m【考点】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1