1、人教版八年级数学上册第十一章三角形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图4-2,作出正五边形的所有对角线,得到一个五角星,那么,在五角星含有的多边形中()A只有三角形B只有三角形和四
2、边形C只有三角形、四边形和五边形D只有三角形、四边形、五边形和六边形2、一个多边形除一个内角外其余内角的和为1510,则这个多边形对角线的条数是()A27B35C44D543、如图所示的图形中具有稳定性的是()ABCD4、如图,在RtABF中,F=90,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CDAC交AB于点D,过点C作CEAB交AB于点E,则下列说法中,错误的是()AABC中,AB边上的高是CEBABC中,BC边上的高是AFCACD中,AC边上的高是CEDACD中,CD边上的高是AC5、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D856、如果三角
3、形的两边长分别为7和2,且它的周长为偶数,那么第三边的长为()A6B7C5D87、长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A4B5C6D78、下列多边形中,内角和与外角和相等的是()A三角形B四边形C五边形D六边形9、如图,在ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()ABFCFBCCAD90CBAFCAFD10、三个等边三角形的摆放位置如图所示,若,则的度数为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若直角三角形的一个锐角为,则另一个锐角等于_
4、2、如图,在ABC中,点D、E分别为边BC、AC上的点,将CDE沿DE翻折得到CDE,使CDAB若A75,C=45,则CEA的大小为 _3、一副三角尺如图摆放,是延长线上一点,是上一点,若,则等于_度4、如图,直线AB、CD相交于点O,BOC,点F在直线AB上且在点O的右侧,点E在射线OC上,连接EF,直线EM、FN交于点G若MEFnCEF,NFE(12n)AFE,且EGF的度数与AFE的度数无关,则EGF=_(用含有的代数式表示)5、图中A+B+C+D+E+F+G=_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;
5、(2)求的度数2、已知,点P在直线之间,连接(1)探究发现:(填空)如图1,过P作,_(已知)(_)_;(2)解决问题:如图2,延长至点分别平分交于点Q,试判断与存在怎样的数量关系,并说明理由;如图3,若,分别作分别平分,求的度数(直接写出结果)3、已知:在中,平分,平分,、交于点(1)如图1:若,求的度数;(2)如图2:点是延长线上一点,连接、,求证:;(3)如图3:在(2)的条件下,过点作,交于点,点在线段的延长线上,连接,若,求的度数4、如图,在ABC中,BAC=90,过点A作AEBC ,过点C作CFAB,AE与CF相交于点D(1)依题意,补全图形;(2)求证:ADC与ACB互余5、如图
6、,CE平分,F为CA延长线上一点,交AB于点G,求的度数-参考答案-一、单选题1、C【解析】【分析】由正五边形的性质和五角星的特点得出五角星含有的多边形中,有三角形、四边形和五边形.【详解】解:根据题意得:在五角星含有的多边形中,有三角形、四边形和五边形,故选C【考点】本题考查了正五边形的性质、五角星的特点,熟练掌握正五边形的性质是解决问题的关键2、C【解析】【详解】设这个内角度数为x,边数为n,(n2)180x=1510,180n=1870+x,n为正整数,n=11,=44,故选C.点睛:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.3、B【解析】【分析
7、】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性【详解】解:因为三角形具有稳定性,四边形不具有稳定性,一个多边形从一个顶点出发引出的对角线将其分成个三角形,此时这个多边形就具有稳定性了,图便具有稳定性,故选B【考点】此题考查了三角形的稳定性和四边形的不稳定性,注意根据三角形的稳定性进行判断4、C【解析】【分析】根据三角形某边上的高的定义(从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高),依次检验四个选项,即可得到答案【详解】解:根据三角形某边上的高的定义验证:A. ABC中,AB边上的高是CE,故A正确;B. ABC中,BC边上的高是AF,故B正确
8、;C. ACD中,AC边上的高是CD,故C错误;D. ACD中,CD边上的高是AC,故D正确;故选C【考点】本题考查了三角形某边上的高的定义;从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高,掌握此定义是解题的关键5、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,故选B【考点】本题考查垂直的性质,解题关键在于在证明6、B【解析】【分析】设第三边的长为 ,根据三角形的三边关系,可得,再由它的周长为偶数,即可求解【详解】解:设第三边的长为 ,根据题意得: ,即 ,它的周长为偶数,当 时,周长为 ,是偶数故选:B【考点】本题主要考查了三角形的三边关系,熟
9、练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键7、B【解析】【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】长度分别为5、3、4,能构成三角形,且最长边为5;长度分别为2、6、4,不能构成三角形;长度分别为2、7、3,不能构成三角形;长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5故选:B.【考点】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.8、B【解析】【分析】根据多边形的内角和公式(n-2)180与多边形的外角和定理列式进行计算即可得解【详解】解:设多边形
10、的边数为n,根据题意得(n-2)180=360,解得n=4故选:B【考点】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键9、C【解析】【分析】根据三角形的角平分线、中线和高的概念判断【详解】解:AF是ABC的中线,BF=CF,A说法正确,不符合题意;AD是高,ADC=90,C+CAD=90,B说法正确,不符合题意;AE是角平分线,BAE=CAE,C说法错误,符合题意;BF=CF,SABC=2SABF,D说法正确,不符合题意;故选:C【考点】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键10、B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角均
11、等于60,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案【详解】解:如图所示,图中三个等边三角形,由三角形的内角和定理可知:,即,又,故答案选B【考点】本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60是解答此题的关键二、填空题1、75【解析】【分析】根据三角形内角和定理计算即可【详解】解:另一个锐角为15,另一个锐角为180-90-15=75,故答案为:75【考点】本题考查了直角三角形的性质,解题的关键是掌握直角三角形两锐角互余2、30【解析】【分析】由CDAB得出DGE=A=75,由折叠性质可知,C=C=45,再根据三角形外角性质求出CEA=DGE-C
12、=75-45=30【详解】解:如图,CDAB,DGE=A=75,由折叠性质可知,C=C=45,CEA=DGE-C=75-45=30,故答案为30【考点】本题考查了翻折变换的知识及三角形外角的性质,解答本题的关键是求出DGE的度数是解题的关键3、15【解析】【分析】根据三角形内角和定理得出ACB=60,DEF=45,再根据两直线平行内错角相等得到CEF=ACB=60,根据角的和差求解即可.【详解】解:在ABC中,ACB=60.在DEF中,EDF=90,DEF=45.又,CEF=ACB=60,CED=CEF-DEF=60-45=15.故答案为:15.【考点】本题考查三角形内角和定理及平行线的性质,
13、熟练掌握平行线的性质是解题的关键.4、#3【解析】【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解【详解】解:CEFAFE+BOC,BOC,CEF+AFE,MEFnCEF,MEFn(+AFE),EGFMEFNFE,EGFn(+AFE)(12n)AFEn+(3n1)AFE,EGF的度数与AFE的度数无关,3n10,即n,EGF;故答案为:【考点】此题考查了三角形外角的性质及角度计算,解题的关键是理解EGF的度数与AFE的度数无关的含义5、540【解析】【分析】根据三角形外角的性质可得,1=C+D,2=E+F,再根据五边形内角和解答即可【详解】解:
14、1=C+D,2=E+F,A+B+C+D+E+F+G=A+B+1+2+G=540故答案为:540【考点】本题考查了三角形外角的性质和五边形内角和利用三角形内角与外角的关系把所求的角的度数归结到五边形中,利用五边形的内角和定理解答三、解答题1、 (1)证明见解析;(2)【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出
15、2、 (1)180,两直线平行,同旁内角互补,360(2);=【解析】【分析】(1)读懂每步推理及推理的依据,即可完成填写;(2)两角关系为:;由ABCD、角平分线的性质及三角形外角的性质可得,再由(1)的结论即可得到两角的关系;延长AM交CD于H,设BAM=,MDN=,由平行线的性质及(1)的结论可得B+2=80,B+2=180,从而可得=40;再由ABCD及三角形外角的性质可得AMD=MHD+=180+,从而可求得结果(1)(1)如图1,过P作,180(已知)(两直线平行,同旁内角互补)360;故答案为:180;两直线平行,同旁内角互补;360(2)分别平分,由(1)知如图3,延长AM交C
16、D于H设BAM=,MDN=AM、DM分别平分PAB、CDNPAM=BAM=,MDH=MDN=BNAP,DNPCB+2=180,C+2=180B+2+C+2=360由(1)结论及APC=1002+C=360APC=260B+2=100B+2(B+2)=80即=40ABCDMHD=180AMD=MHD+=180+=180()=140 即的度数为【考点】本题主要考查了平行线的性质、三角形外角的性质与角平分线的性质等知识,构造适当的辅助线是解决本题后两问的关键,也是本题的难点3、 (1)(2)证明见解析(3)64【解析】【分析】(1)先证明,再求解,再利用三角形的内角和定理可得答案;(2)利用三角形的
17、外角的性质证明,从而可得结论;(3)先证明,设,求解,证明,再列方程求解即可(1)证明:、分别平分与,在中,(2)证明:是得一个外角,(3)解:, ,平分,平分,设, 而 【考点】本题考查的是平行线的性质,三角形的角平分线的定义,三角形的外角的性质,三角形的内角和定理的应用,方程思想的应用,熟练的运算三角形的内角和定理与外角的性质建立角与角之间的关系是解本题的关键4、 (1)见解析(2)见解析【解析】【分析】(1)根据题意补全图形即可;(2)根据平行线的性质可得出B=ADC,再根据直角三角形两锐角互余可得结论(1)如图所示:(2)ADBC,ABCD,B+BAD=180,ADC+BAD=180B
18、=ADC,在ABC中,BAC=90,B+ACB=90,ADC +ACB=90,即ADC 与ACB互余【考点】本题主要考查了作平行线,平行线的性质以及直角三角形两锐角互余,正确识别图形是解答本题的关键5、25【解析】【分析】根据角平分线的定义求出ACE,再根据两直线平行,内错角相等可得AFG=ACE,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出GAF,根据三角形的内角和定理即可得到结论【详解】解:CE平分,故的度数是25【考点】本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键