收藏 分享(赏)

人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx

上传人:a**** 文档编号:869415 上传时间:2025-12-17 格式:DOCX 页数:32 大小:875.79KB
下载 相关 举报
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第1页
第1页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第2页
第2页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第3页
第3页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第4页
第4页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第5页
第5页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第6页
第6页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第7页
第7页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第8页
第8页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第9页
第9页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第10页
第10页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第11页
第11页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第12页
第12页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第13页
第13页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第14页
第14页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第15页
第15页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第16页
第16页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第17页
第17页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第18页
第18页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第19页
第19页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第20页
第20页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第21页
第21页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第22页
第22页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第23页
第23页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第24页
第24页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第25页
第25页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第26页
第26页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第27页
第27页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第28页
第28页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第29页
第29页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第30页
第30页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第31页
第31页 / 共32页
人教版九年级数学上册第二十二章二次函数专项测评试题(解析卷).docx_第32页
第32页 / 共32页
亲,该文档总共32页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)

2、B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)2、一次函数与二次函数在同一坐标系中的图象大致为( )ABCD3、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大4、在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是()ABCD5、如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,BC的长y米,菜园的面积为S(单位:平方米) 当x

3、在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是()A一次函数关系,二次函数关系B反比例函数关系,二次函数关系C一次函数关系,反比例函数关系D反比例函数关系,一次函数关系6、如图,抛物线与抛物线交于点,且它们分别与轴交于点、过点作轴的平行线,分别与两抛物线交于点、,则以下结论:无论取何值,总是负数;抛物线可由抛物线向右平移3个单位,再向下平移3个单位得到;当时,随着的增大,的值先增大后减小;四边形为正方形其中正确的是()ABCD7、关于的一元二次方程没有实数根,抛物线的顶点在()A第一象限B第二象限C第三象限D第四象限8、由二次函数,可知()A其图象的开口向下

4、B其图象的对称轴为直线x=-3C其最小值为1D当x0得到b0,则一次函数y=ax+b经过第一、三、四象限,所以A选项正确;D、由二次函数y=ax2+bx的图象得a0,再根据0得到b0,则一次函数y=ax+b经过第二、三、四象限,所以D选项错误故选:A【考点】本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象也考查了二次函数图象与系数的关系3、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符

5、合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键4、D【解析】【分析】根据二次函数与一次函数的图象可知,从而判断出二次函数的图象【详解】解:二次函数的图象开口向上,次函数的图象经过一、三、四象限,对于二次函数的图象,开口向上,排除A、B选项;,对称轴,D选项符合题意;故选:D【考点】本题考查了一次函数的图象以及二次函数的图象,根据二次函数

6、的图象和一次函数图象经过的象限,找出,是解题的关键5、A【解析】【分析】根据题意求得y和S与x的函数关系式,然后由函数关系式可直接进行判别即可【详解】解:由题意可知:,则,即,y与x满足一次函数关系菜园的面积:,S与x满足二次函数的关系故选A【考点】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键6、B【解析】【分析】根据非负数的相反数或者直接由图像判断即可;先求抛物线的解析式,再根据抛物线的顶点坐标,判断平移方向和平移距离即可判断;先根据题意得出时,观察图像可知,然后计算,进而根据一次函数的性质即可判断;分别计算出的坐标,根据正方形的判定定理进行判断即可【详

7、解】,无论取何值,总是负数,故正确;抛物线与抛物线交于点,即,解得,抛物线,抛物线的顶点,抛物线的顶点为,将向右平移3个单位,再向下平移3个单位即为,即将抛物线向右平移3个单位,再向下平移3个单位可得到抛物线,故正确;,将代入抛物线,解得,将代入抛物线,解得,从图像可知抛物线的图像在抛物线图像的上方,当,随着的增大,的值减小,故不正确;设与轴交于点,由可知,当时,即,四边形是平行四边形,四边形是正方形,故正确,综上所述,正确的有,故选:B【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识7、B【解析】【分析】求出抛物线的对称轴-1,可知顶

8、点在y轴的基侧,根据没有实数根,可知开口向上的与x轴没有交点,据此即可判断抛物线在第二象限【详解】解:抛物线的对称轴,可知抛物线的顶点在y轴左侧,又关于x的一元二次方程没有实数根,开口向上的与x轴没有交点,抛物线的顶点在第二象限故选:B【考点】本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,熟悉二次函数的性质是解题的关键8、C【解析】【分析】根据二次函数的性质,直接根据的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可【详解】解:由二次函数,可知:,其图象的开口向上,故此选项错误;其图象的对称轴为直线,故此选项错误;其最小值为1,故此选项正确;当时,随的增大而减

9、小,故此选项错误故选:【考点】此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识9、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便10、C【解析】【分析】根据二次函数的性质ya(xh)2+k的顶点坐标是(h,k)进行求解即可.【详解】抛物线解析式为y=3(

10、x-2)2+5,二次函数图象的顶点坐标是(2,5)故选C【考点】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等二、填空题1、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a0)的函数叫做二次函数,进行求解即可【详解】解:抛物线是二次函数,故答案为:3【考点】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义2、1【解析】【分析】根据表中的对应值得到x=1和x=3时函数值相等,则得到抛物线的对称轴为直线x=2,由于y1=y2,所以,是抛物线上的对称点,则,然后解方程即可【详解】解:x=1时

11、,y=2;x=3时,y=2,抛物线的对称轴为直线x=2,两点都在该函数的图象上,y1=y2,点,是抛物线上的对称点,解得:故答案为:1【考点】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式3、(答案不唯一)【解析】【分析】设与交点为,根据题意关于y轴对称和二次函数的对称性,可找到的值(只需满足互为相反数且满足即可)即可写出一个符合条件的方程【详解】设与交点为,根据题意则的对称轴为故设则方程为:故答案为:【考点】本题考查了二次函数的对称性,二次函数与一元二次方程的关系,熟悉二次函数的性质和找到两根的对称性类比二次函数的对称性是解题的关键4、1或【解析】【分析】先运用根的

12、判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得,当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【

13、考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键5、【解析】【分析】利用抛物线的对称性得到抛物线与轴的另一个交点坐标为,从而得到抛物线在轴上截得的线段的长,利用和对称轴方程不能确定顶点的纵坐标和的值.【详解】二次函数的图象过点,对称轴为直线,抛物线与轴的另一个交点坐标为,抛物线在轴上截得的线段的长是.故答案为:.【考点】本题考查了抛物线与轴的交点:把求二次函数(,是常数,)与轴的交点坐标问题转化解.关于的一元二次方程即可求得交点横坐标.三、解答题1、(1),;(2)50元或80元;(3)商场销售该品牌玩具获

14、利的最大利润是10560元【解析】【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价-进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论;(3)根据销售单价不低于45元且商场要完成不少于480件的销售任务求得45x52,根据二次函数的性质得到当45x52时,y随x增大而增大,于是得到结论【详解】解:(1)依等量关系式“销量=原销量-因涨价而减少销量,总利润=单个利润销量”可列式为: y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30

15、000(2)由题意可得:10+1300x30000=10000,解得:x=50或x=80,该玩具销售单价x应定为50元或80元(3)由题意可得:,解得:45x52,W=10+1300x30000=10(+12250,100或m3(2)-9(3)或或【解析】【分析】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断并求出c的取值范围,从而求出c的最小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2)解:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个,解得:,的最小值为,(3)解:点A的坐标是(0,1),又当时,抛物线与x轴只有一个公共点,当时,当时,当时,解得:,或者,无解当时,无解,或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【考点】此题主要考查的是函数图象与x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1