1、高考资源网() 您身边的高考专家温馨提示: 此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。 考点11 数列的综合应用一、解答题1.(2012大纲版全国卷高考理科22)(12分)函数f,定义数列如下:,是过两点,的直线与轴交点的横坐标.()证明:;()求数列的通项公式. 【解题指南】本题()先求出直线的方程,然后利用数学归纳法进行证明,()结合()中的相关结论写出数列的递推公式,根据递推公式的结构特征,构造新数列,求数列的通项公式.【解析】()用数学归纳法证明2 xnxn+13. ()当时,直线的方程为,令,解得,所以.()假设时,结论成立,即
2、,直线的方程为,令,解得.由归纳假设知, ,即.所以,即当时,结论成立.由()()知,对于任意的正整数,成立.()由()及.设,则,数列是首项为,公比为的等比数列.所以,即数列的通项公式为.2.(2012大纲版全国卷高考文科18)(12分)已知数列中,前n项和.()求,.()求的通项公式.【解题指南】由,求;由,求出;求的通项公式时利用,导出与之间的关系,根据递推公式的特点,求通项公式.【解析】(),.又, .() 由题设知,.当时,. . .以上个式子的两端分别相乘,得到, 又.3.(2012重庆高考理科21)设数列的前项和满足其中.(1)求证: 是首项为1的等比数列;(2)若,求证:,并给
3、出等号成立的充要条件.【解题指南】利用已知条件及数列前n项和的性质可证明为等比数列.可利用数学归纳法证明第(2)问.【解析】(1)方法一:由,得,即,因为,故得.又由题设条件知,两式相减得,即,由,知,因此.综上, 对所有的成立,从而是首项为1,公比为的等比数列.方法二:用数学归纳法证明.当时, 由,得,即,因为,故所以结论成立.假设当时,结论成立,即那么这就是说,当时,结论也成立.综上可得,对任意的,因此是首项为1,公比为的等比数列.(2)方法一:当或时,显然成立.设且.由(1)知所以要证的不等式化为,即证:.当时,上面不等式的等号成立.当时,与同为负;当时,与同为正.因此当且时,总有,即,
4、上面不等式对从到求和得由此得综上,当时,有,当且仅当或时等号成立.方法二:当或时,显然成立.当时, 也成立.当时,由(1)知.下证:当时,上面不等式化为,令当时,故即所要证的不等式成立.当时,对求导得其中则即是上的减函数,故从而进而是上的增函数,因此所要证的不等式成立.当时,令则,由已证的结论知两边同乘以得所要证的不等式.综上,当且时,有,当且仅当或时等号成立.4.(2012四川高考理科20)已知数列的前项和为,且对一切正整数都成立.()求,的值;()设,数列的前项和为,当为何值时,最大?并求出的最大值.【解题指南】()直接把代入,构造关于,的方程组求解;()先求出数列的通项公式,再求数列的通
5、项公式,由对数的运算性质,可知数列为单调递减的等差数列,把所有正项求和即可.【解析】()取n=1,得 取n=2,得 又-,得 若a2=0, 由知a1=0, 若a2, 由解得,综上可得,a1=0,a2=0或.()当a10时,由(I)知当, (2+)an-1=S2+Sn-1, 所以an=,所以.令. 所以数列bn是单调递减的等差数列(公差为),从而 b1b2b7=,当n8时,bnb8=,故n=7时,Tn取得最大值,且Tn的最大值为T7=.5、(2012四川高考文科20)已知数列的前项和为,常数,且对一切正整数都成立.()求数列的通项公式;()设,当为何值时,数列的前项和最大?【解析】()取n=1,得 若a1=0,则s1=0, 当n. 若a1. 当n 两式相减得2an-2an-1=an,所以an=2an-1(n2),从而数列an是等比数列.所以an=a12n-1=综上,当a1 = 0时, 当a1 .()当a10且.所以数列bn是单调递减的等差数列(公差为-lg2).b1b2b6=,当n7时,bnb7=,故数列lg的前6项的和最大. 关闭Word文档返回原板块。高考资源网版权所有,侵权必究!