ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:519.50KB ,
资源ID:821026      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-821026-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017《世纪金榜》高考数学(全国文理通用)一轮复习:2012年高考分类题库(最新)大纲版 考点11 数列的综合应用 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017《世纪金榜》高考数学(全国文理通用)一轮复习:2012年高考分类题库(最新)大纲版 考点11 数列的综合应用 WORD版含解析.doc

1、高考资源网() 您身边的高考专家温馨提示: 此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。 考点11 数列的综合应用一、解答题1.(2012大纲版全国卷高考理科22)(12分)函数f,定义数列如下:,是过两点,的直线与轴交点的横坐标.()证明:;()求数列的通项公式. 【解题指南】本题()先求出直线的方程,然后利用数学归纳法进行证明,()结合()中的相关结论写出数列的递推公式,根据递推公式的结构特征,构造新数列,求数列的通项公式.【解析】()用数学归纳法证明2 xnxn+13. ()当时,直线的方程为,令,解得,所以.()假设时,结论成立,即

2、,直线的方程为,令,解得.由归纳假设知, ,即.所以,即当时,结论成立.由()()知,对于任意的正整数,成立.()由()及.设,则,数列是首项为,公比为的等比数列.所以,即数列的通项公式为.2.(2012大纲版全国卷高考文科18)(12分)已知数列中,前n项和.()求,.()求的通项公式.【解题指南】由,求;由,求出;求的通项公式时利用,导出与之间的关系,根据递推公式的特点,求通项公式.【解析】(),.又, .() 由题设知,.当时,. . .以上个式子的两端分别相乘,得到, 又.3.(2012重庆高考理科21)设数列的前项和满足其中.(1)求证: 是首项为1的等比数列;(2)若,求证:,并给

3、出等号成立的充要条件.【解题指南】利用已知条件及数列前n项和的性质可证明为等比数列.可利用数学归纳法证明第(2)问.【解析】(1)方法一:由,得,即,因为,故得.又由题设条件知,两式相减得,即,由,知,因此.综上, 对所有的成立,从而是首项为1,公比为的等比数列.方法二:用数学归纳法证明.当时, 由,得,即,因为,故所以结论成立.假设当时,结论成立,即那么这就是说,当时,结论也成立.综上可得,对任意的,因此是首项为1,公比为的等比数列.(2)方法一:当或时,显然成立.设且.由(1)知所以要证的不等式化为,即证:.当时,上面不等式的等号成立.当时,与同为负;当时,与同为正.因此当且时,总有,即,

4、上面不等式对从到求和得由此得综上,当时,有,当且仅当或时等号成立.方法二:当或时,显然成立.当时, 也成立.当时,由(1)知.下证:当时,上面不等式化为,令当时,故即所要证的不等式成立.当时,对求导得其中则即是上的减函数,故从而进而是上的增函数,因此所要证的不等式成立.当时,令则,由已证的结论知两边同乘以得所要证的不等式.综上,当且时,有,当且仅当或时等号成立.4.(2012四川高考理科20)已知数列的前项和为,且对一切正整数都成立.()求,的值;()设,数列的前项和为,当为何值时,最大?并求出的最大值.【解题指南】()直接把代入,构造关于,的方程组求解;()先求出数列的通项公式,再求数列的通

5、项公式,由对数的运算性质,可知数列为单调递减的等差数列,把所有正项求和即可.【解析】()取n=1,得 取n=2,得 又-,得 若a2=0, 由知a1=0, 若a2, 由解得,综上可得,a1=0,a2=0或.()当a10时,由(I)知当, (2+)an-1=S2+Sn-1, 所以an=,所以.令. 所以数列bn是单调递减的等差数列(公差为),从而 b1b2b7=,当n8时,bnb8=,故n=7时,Tn取得最大值,且Tn的最大值为T7=.5、(2012四川高考文科20)已知数列的前项和为,常数,且对一切正整数都成立.()求数列的通项公式;()设,当为何值时,数列的前项和最大?【解析】()取n=1,得 若a1=0,则s1=0, 当n. 若a1. 当n 两式相减得2an-2an-1=an,所以an=2an-1(n2),从而数列an是等比数列.所以an=a12n-1=综上,当a1 = 0时, 当a1 .()当a10且.所以数列bn是单调递减的等差数列(公差为-lg2).b1b2b6=,当n7时,bnb7=,故数列lg的前6项的和最大. 关闭Word文档返回原板块。高考资源网版权所有,侵权必究!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3