1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中专项测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条
2、角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:52、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD3、不一定在三角形内部的线段是()A三角形的角平分线B三角形的中线C三角形的高D三角形的高和中线4、如图,已知 BG 是ABC 的平分线,DEAB 于点 E,DFBC 于点 F,DE=6,则 DF 的长度是( )A2B3C4D65、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理
3、,最为恰当的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,若判断,则需要添加的条件是() 线 封 密 内 号学级年名姓 线 封 密 外 A,B,C,D,2、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,13、如图,在AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中正确的是( )AAODBOCBAPCBPDC点P在AOB的平分线上DCP=DP4、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全
4、等形5、下列每组中的两个图形,不是全等图形的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是_(写出一个即可)2、如图,将三角尺和三角尺 (其中)摆放在一起,使得点在同一条直线上,交于点,那么度数等于_3、用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形图中,_度 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,在四边形中,于,则的长为_5、(1)如图1所示,_;(2)如果把图1称为二环三角形,它的内角和为;图2称为二环四边形,它
5、的内角和为,则二环四边形的内角和为_;二环五边形的内角和为_;二环n边形的内角和为_四、解答题(5小题,每小题8分,共计40分)1、如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,CAB50,C60,求DAE和BOA的度数2、如图所示,已知FDBC于D,DEAB于E,AFD=150,B=C,求EDF的大小3、(1)如图(a),BD平分,CD平分试确定和的数量关系(2)如图(b),BE平分,CE平分外角试确定和的数量关系(3)如图(c),BF平分外角,CF平分外角试确定和的数量关系4、如图,已知,求证:.5、如图所示,在三角形ABC中,作的平分线与AC交于点E,求证:. 线 封
6、密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键2、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键3、C【解析】【分析】根据三角形的高、中线、角平分线的性质解答【详解】解:因为在三角形中,它的中线、角平分线一定在三角
7、形的内部,而钝角三角形的两条高在三角形的外部故选:C【考点】本题考查了三角形的高、中线、角平分线熟悉各个性质是解题的关键4、D【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据角平分线的性质进行求解即可得.【详解】BG 是ABC 的平分线,DEAB,DFBC,DF=DE=6, 故选:D.【考点】本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键5、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD
8、中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键二、多选题1、BC【解析】【分析】已知公共角A,根据三角形全等的判定方法对选项依次判定即可;【详解】解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;B. 根据SAS判定ACDABE,故本选项正确;C. 根据AAS判定ACDABE,故本选项正确;D. 不能判定ACDABE,故本选项错误;故选:B、C【考点】本题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.2、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意
9、两边之差小于第三边”,进行分析【详解】解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符合题意;D、5+17,不能构成三角形,不符合题意 线 封 密 内 号学级年名姓 线 封 密 外 故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键3、ABCD【解析】【分析】根据题中条件,由两边夹一角可得AODBOC,得出对应角相等,又由已知得出AC=BD,可得APCBPD,同理连接OP,可证AOPBOP,进而可得出结论【详解】解:OA=OB,OC=OD,AOB为公共角,AODBOC,A=B
10、,又APC=BPD,ACP=BDP,OA-OC=OB-OD,即AC=BD,APCBPD,AP=BP,CP=DP,连接OP,即可得AOPBOP,得出 AOP= BOP,点P在AOB的平分线上故答案选:ABCD【考点】本题主要考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等的判定和性质4、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的10张五寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:A
11、B【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑5、ABD【解析】【分析】根据全等形的定义:能够完全重合的两个图形是全等图形,据此可得正确答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、大小不同,不能重合,不是全等图形,符合题意;B、大小不同,不能重合,不是全等图形,符合题意;C、大小相同,形状相同,是全等图形,不符合题意;D、正五边形和正六边形不是全等图形,符合题意;故选:ABD【考点】本题考查了全等图形的识别,熟知全等图形的定义是解本题的关键三、填空题1、5(答案不唯一)【解析】【分析】根据三角形的任意两边之和大于第三边,任意两边之差
12、小于第三边进行求解即可【详解】解:由题意知:43a4+3,即1a7,整数a可取2、3、4、5、6中的一个,故答案为:5(答案不唯一)【考点】本题考查三角形的三边关系,能根据三角形的三边关系求出第三边a的取值范围是解答的关键2、105【解析】【分析】利用直角三角形的两个锐角互余求得ABC与FDE的度数,然后在MDB中,利用三角形内角和定理求得DMB,再依据对顶角相等即可求解【详解】解:ABC90C906030,FDE90F904545,DMB180ABCFDE1803045105,CMFDMB105故答案为:105【考点】本题考查了直角三角形两锐角互余、三角形的内角和定理以及对顶角的性质,正确求
13、得DMB的度数是关键3、36【解析】【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题【详解】解:,是等腰三角形,度,故答案为:36【考点】本题主要考查了多边形的内角和定理和等腰三角形的性质 解题关键在于知道n边形的内角和为:180(n2)4、【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】过点B作 交DC的延长线交于点F,证明 推出,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示, , , ,即,故答案为【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型5、 360 720
14、 1080 【解析】【分析】(1)结合题意,根据对顶角和三角形内角和的知识,得,再根据四边形内角和的性质计算,即可得到答案;(2)连接,交于点M,根据三角形内角和和对顶角的知识,得;结合五边形内角和性质,得;结合(1)的结论,根据数字规律的性质分析,即可得到答案【详解】(1)如图所示,连接AD,交于点M 线 封 密 内 号学级年名姓 线 封 密 外 ,;故答案为:360(2)如图,连接,交于点M, 二环四边形的内角和为:二环三角形的内角和为:二环四边形的内角和为:二环五边形的内角和为:二环n边形的内角和为:故答案为:,【考点】本题考查了多边形内角和、对顶角、数字规律的知识;解题的关键是熟练掌握
15、三角形内角和、多边形内角和、数字规律的性质,从而完成求解四、解答题1、DAE5,BOA120【解析】【分析】由CAB50,C60可求出ABC;由AE、BF是角平分线,得到CBFABF35,EAFEAB25;由AD是高,得到DAC;从而计算得到DAE和BOA【详解】CAB50,C60ABC180506070AE、BF是角平分线CBFABF35,EAFEAB25又AD是高ADC90DAC18090C30 线 封 密 内 号学级年名姓 线 封 密 外 DAEDACEAF5又ABF35,EAB25BOA180-EAB-ABF180-25-35120DAE5,BOA120【考点】本题考查了三角形角平分线
16、、直角三角形的知识;求解的关键是熟练掌握三角形以及直角三角形的性质,从而完成求解2、EDF的大小为60【解析】【分析】根据三角形内角和定理以及四边形内角和定理即可求出答案【详解】解:AFD=C+FDC,FDC=90,AFD=150,C=60,B=C,A=60,A+AED+EDF+AFD=360,EDF=60故EDF的大小为60【考点】本题考查了三角形的内角和定理,四边形内角和定理,解题的关键是熟练三角形内角和定理,本题属于基础题型3、(1);(2);(3)【解析】【分析】(1)根据三角形的内角和定理以及角平分线的定义即可确定和的数量关系;(2)根据三角形的外角性质以及角平分线的定义可得,进而可
17、得和的数量关系;(3)根据三角形的内角和定理可得,结合角平分线的定义,根据即可确定和的数量关系【详解】(1)在中,在中,;(2)在中,在中, 线 封 密 内 号学级年名姓 线 封 密 外 (3)在中,在中,【考点】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,熟练掌握以上知识是解题的关键4、证明见解析.【解析】【分析】利用SSS可证明ABDACE,可得BAD=1,ABD=2,根据三角形外角的性质即可得3=BAD+ABD,即可得结论.【详解】在ABD和ACE中,ABDACE,BAD=1,ABD=2,3=BAD+ABD,3=1+2.【考点】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.5、见解析【解析】【分析】由于BC,AE和BE没在一条线上,不能进行比较;故在BC上截取AE和BE,然后根据等腰三角形、角平分线的知识即可发现全等三角形,证明边的相等关系,最后运用线段的和差关系,即可完成证明.【详解】证明:如图在上截取,连结.在上截取,连结.,平分, 线 封 密 内 号学级年名姓 线 封 密 外 ,又,【考点】本题考查了等腰三角形的性质,在进行线段比较的题目中,可以采用截取法,让它们位于一条直线上,以方便比较.