1、北师大版八年级数学上册第一章勾股定理专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD中,AB4,BC6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内的点F处,连接CF
2、,则CF的长为()ABCD2、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A1B2021C2020D20193、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形4、如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A10mB15mC18mD20m5、如图,在由边长为1的7个正六
3、边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D66、在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A4B5C6D77、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A0.7米B1.5米C2.2米D2.4米8、如图,已知点E在正方形AB
4、CD内,满足AEB=90,AE=6,BE=8,则阴影部分的面积是()A48B60C76D809、ABC的三边长a,b,c满足+(b12)2+|c13|0,则ABC的面积是()A65B60C30D2610、已知点是平分线上的一点,且,作于点,点是射线上的一个动点,若,则的最小值为()A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米2、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根
5、缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_尺.3、如图,矩形ABCD中,AD6,AB8点E为边DC上的一个动点,ADE与ADE关于直线AE对称,当CDE为直角三角形时,DE的长为_4、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_5、把两个同样大小含角的三角尺按如图所示的方
6、式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点在同一直线上若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,是一块草坪,已知AD=12m,CD=9m,ADC=90,AB=39m,BC=36m,求这块草坪的面积2、一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?3、在ABC中,AB5cm,AC3cm,动点P从点B出发,沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当ABP为直角三角形时,求t的值4、如图,点B,F,C,E在同一条直
7、线上,且(1)求证:(2)若,求BE的长5、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?-参考答案-一、单选题1、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BFAE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BFAEF是由ABE沿AE折叠得到的,BFAE,BE=EFBC=6,点E为
8、BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分2、B【解析】【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可【详解】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”
9、了2次后形成的图形中所有的正方形的面积和为3,“生长”了3次后形成的图形中所有的正方形的面积和为4,“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c23、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答4、C【解析】【详解】树的
10、折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,AC=13m,这棵树原来的高度=BC+AC=5+13=18m故选C5、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键6、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4
11、,故选A【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和这里,边的平方的几何意义就是以该边为边的正方形的面积7、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选:C【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.8、C【解析】【详解】解:AEB=90,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=
12、102-=100-24=76.故选:C.9、C【解析】【分析】首先根据非负数的性质可得a-5=0,b-12=0,c-13=0,进而可得a、b、c的值,再利用勾股定理逆定理证明ABC是直角三角形,最后由直角三角形面积公式求解即可【详解】解:+(b-12)2+|c-13|=0,a-5=0,b-12=0,c-13=0,a=5,b=12,c=13,52+122=132,ABC是直角三角形,SABC=30故选:C【考点】此题主要考查了非负数的性质,以及勾股定理逆定理,熟练掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,利用非负数性质求出a、b、c的值是解题的关键10、
13、B【解析】【分析】根据垂线段最短可得PNOA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可【详解】解:当PNOA时,PN的值最小,OC平分AOB,PMOB,PM=PN,由勾股定理可知:PM=3,PN的最小值为3故选B【考点】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键二、填空题1、9【解析】【分析】在RtABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,BC17米,AC8米,AB15(
14、米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用2、25.【解析】【详解】解:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题.根据勾股定理可求出葛藤长为(尺)故答案为:253、3或6【解析】【分析】分两种情况分别求解,(1)当CED90时,如图(1),根据轴对称的性质得AEDAED45,得DEAD6;(2)当EDA90时,如图(2),根据轴对称的性质得ADED,ADAD
15、,DEDE,得A、D、C在同一直线上,根据勾股定理得AC10,设DEDEx,则ECCDDE8x,根据勾股定理得,DE2DC2EC2,代入相关的值,计算即可【详解】解:当CED90时,如图(1),CED90,根据轴对称的性质得AEDAED9045,D90,ADE是等腰直角三角形,DEAD6;(2)当EDA90时,如图(2),根据轴对称的性质得ADED90,ADAD,DEDE,CDE为直角三角形,即CDE90,ADECDE180,A、D、C在同一直线上,根据勾股定理得,CD1064,设DEDEx,则ECCDDE8x,在RtDEC中,DE2DC2EC2,即x216(8x)2,解得x3,即DE3;综上
16、所述:DE的长为3或6;故答案为:3或6【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键4、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米故答案为:12米【考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解5、【解析】【分析】如图,先利用等腰直角三角形的性质求出 ,再利用勾股定理 求出 D
17、F,即可得出结论【详解】如图,过点作于,在中,两个同样大小的含角的三角尺,在中,根据勾股定理得,故答案为【考点】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题 的关键三、解答题1、216平方米【解析】【分析】连接AC,根据勾股定理计算AC,根据勾股定理的逆定理判定三角形ABC是直角三角形,根据面积公式计算即可【详解】连接AC,AD12,CD9,ADC90,AC=15,AB39,BC36,AC=15,ACB=90,这块空地的面积为:=216(平方米),故这块草坪的面积216平方米【考点】本题考查了勾股定理及其逆定理,熟练掌握定理并灵活运用是解题的关键2、(1)12米;(2)
18、7米【解析】【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解【详解】解:(1)由题意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米【考点】
19、本题主要考查勾股定理,熟练掌握勾股定理是解题的关键3、当ABP为直角三角形时,t4或【解析】【分析】当ABP为直角三角形时,分两种情况:当APB为直角时,当BAP为直角时,分别求出此时t的值即可【详解】在RtABC中,由勾股定理得:,BC4cm,由题意得:BPtcm,当APB为直角时,如图,点P与点C重合,BPBC4cm,t4;当BAP为直角时,如图,BPtcmCP(t4)cm,AC3cm,在RtACP中,在RtBAP中,即,解得,答:当ABP为直角三角形时,t4或【考点】本题考查了勾股定理以及直角三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分类讨论,否则会出现漏解4、 (1)见解析(2)6【解析】【分析】(1)根据已知条件利用证明即可;(2)根据勾股定理求解即可(1)证明:,又,(2)解:,且,由勾股定理得,【考点】本题考查了全等三角形的性质与判定,勾股定理解直角三角形,掌握以上知识是解题的关键5、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方程求解即可.【详解】解:设,在中,答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键直角三角形两条直角边的平方和等于斜边的平方 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解有时也可以利用勾股定理列方程求解