1、第十三章选修系列4学案73几何证明选讲(一)相似三角形的判定及有关性质导学目标: 1.了解平行线等分线段定理和平行线分线段成比例定理;2.掌握相似三角形的判定定理及性质定理;3.理解直角三角形射影定理自主梳理1平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等2平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段_推论1平行于三角形一边的直线截其他两边(或_),所得的对应线段_推论2平行于三角形的一边,并且和其他两边_的直线所截得的三角形的三边与原三角形的三边对应_推论3三角形的一个内角平分线分对边所得
2、的两条线段与这个角的两边对应成比例3相似三角形的判定判定定理1对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似简述为:两角对应_的两个三角形相似判定定理2对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似简述为:两边对应成比例且_相等的两个三角形相似判定定理3对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似简述为:三边对应成比例的两个三角形相似4相似三角形的性质(1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(2)相似三角
3、形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方5直角三角形射影定理直角三角形一条直角边的平方等于该直角边在_与斜边的_,斜边上的高的_等于两条直角边在斜边上的射影的乘积自我检测1如果梯形的中位线的长为6 cm,上底长为4 cm,那么下底长为_cm.2如图,在ABC中,EDBC,EFBD,则下列四个结论正确的是(填序号)_;.3如图,在RtABC中,ACB90,CDAB于点D,CD2,BD3,则AC_.4如图所示,在ABC中,AD是BAC的平分线,AB5 cm,AC4 cm,BC7 cm,则BD_cm.第4题图第5题图5(2011陕西)如图,BD,AEBC,ACD90,且AB6,
4、AC4,AD12,则BE_.探究点一确定线段的n等分点例1已知线段PQ,在线段PQ上求作一点D,使PDDQ21.变式迁移1已知ABC,D在AC上,ADDC21,能否在AB上找到一点E,使得线段EC的中点在BD上探究点二平行线分线段成比例定理的应用例2在ABC的边AB、AC上分别取D、E两点,使BDCE,DE的延长线交BC的延长线于点F.求证:.变式迁移2 如图,已知ABCDEF,ABa,CDb(0ab),AEECmn(0m0,舍去负根),所以斜边的长为5,故斜边上的中线的长为.515解析ADBC,OEAD,OEAD12,同理可求得OFBC20,EFOEOF15.62解析连接DE,因为ADBC,
5、所以ADB是直角三角形,则DEABBEDC.又因为DGCE于G,所以DG平分CE,故EG2.76解析设DEx,DEAC,解得BE.又AD平分BAC,解得x6.8.解析连接DE,延长QP交AB于N,则得PQBC.9证明由三角形的内角平分线定理得,在ABD中,在ABC中,(3分)在RtABC中,由射影定理知,AB2BDBC,即.(6分)由得:,(9分)由得:.(11分)10证明延长AD至G,使DGMD,连接BG、CG.BDDC,MDDG,四边形BGCM为平行四边形(4分)ECBG,FBCG,(8分)EFBC.(12分)11证明BOPM,(2分)DOPS,.(4分)即,由BOPR得.(6分)由DOP
6、N得.(8分),即,.PMPNPRPS.(12分)学案74几何证明选讲(二)直线与圆的位置关系导学目标: 1.理解圆周角定理,弦切角定理及其推论;2.理解圆的切线的判定及性质定理;3.理解相交弦定理,割线定理,切割线定理;4.理解圆内接四边形的性质定理及判定自主梳理1圆周角、弦切角及圆心角定理(1)_的度数等于其的对_的度数的一半推论1:_(或_)所对的圆周角相等;同圆或等圆中,相等的圆周角_相等推论2:半圆(或直径)所对的_等于90.反之,90的圆周角所对的弧是_(或_)(2)弦切角的度数等于其所夹孤的度数的_(3)圆心角的度数等于它所对弧的度数2圆中比例线段有关定理(1)相交弦定理:_的两
7、条_,每条弦被交点分成的_的积相等(2)切割线定理:从圆外一点引圆的一条割线和一条切线,切线长是这点到割线与圆的两个交点的线段长的_(3)割线定理:从圆外一点引圆的两条_,该点到每条割线与圆的交点的两条线段长的积相等温馨提示相交弦定理,切割线定理,割线定理揭示了与圆有关的线段间的比例关系,在与圆有关的比例线段问题的证明、计算以及证明线段或角相等等问题中应用甚广3切线长定理从_一点引圆的两条切线,_相等4圆内接四边形的性质与判定定理(1)性质定理:圆内接四边形的对角_推论:圆内接四边形的任何一个外角都等于它的内角的_(2)判定定理:如果四边形的_,则四边形内接于_推论:如果四边形的一个外角等于它
8、的_,那么这个四边形的四个顶点_5圆的切线的性质及判定定理(1)性质定理:圆的切线垂直于经过切点的_推论1:经过_且_与垂直的直线必经过切点推论2:经过_且切线与垂直的直线必经过_(2)判定定理:过半径_且与这条半径_的直线是圆的切线自我检测1如图在RtABC中,B90,D是AB上一点,且AD2DB,以D为圆心,DB为半径的圆与AC相切,则sin A_.2(2010南京模拟)如图,AB是圆O的直径,EF切圆O于C,ADEF于D,AD2,AB6,则AC长为_3(2011湖南)如图,A,E是半圆周上的两个三等分点,直径BC4,ADBC,垂足为D,BE与AD相交于点F,则AF的长为_4如图所示,AB
9、是O的直径,BC是O的切线,AC交O于点D,若AD32,CD18,则AB_.5(2010揭阳模拟)如图,已知P是O外一点,PD为O的切线,D为切点,割线PEF经过圆心O,PF12,PD4,则圆O的半径长为_、EFD的度数为_.探究点一与圆有关的等角、等弧、等弦的判定例1 如图,O的两条弦AC,BD互相垂直,OEAB,垂足为点E.求证:OECD.变式迁移1 在ABC中,已知CM是ACB的平分线,AMC的外接圆O交BC于点N;若ACAB,求证:BN3MN.探究点二四点共圆的判定例2 如图,四边形ABCD中,AB、DC的延长线交于点E,AD,BC的延长线交于点F,AED,AFB的角平分线交于点M,且
10、EMFM.求证:四边形ABCD内接于圆变式迁移2 如图,已知AP是O的切线,P为切点,AC是O的割线,与O交于B、C两点,圆心O在PAC的内部,点M是BC的中点(1)证明:A,P,O,M四点共圆;(2)求OAMAPM的大小探究点三与圆有关的比例线段的证明例3 如图,PA切O于点A,割线PBC交O于点B,C,APC的角平分线分别与AB,AC相交于点D,E,求证:(1)ADAE;(2)AD2DBEC.变式迁移3 (2010全国)如图,已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(1)ACEBCD;(2)BC2BECD.1圆周角定理与圆心角定理在证明角相等时有较普遍的应用,尤其是利用
11、定理进行等角代换与传递2要注意一些常用的添加辅助线的方法,若证明直线与圆相切,则连结直线与圆的公共点和圆心证垂直;遇到直径时,一般要引直径所对的圆周角,利用直径所对的圆周角是直角解决有关问题3判断两线段是否相等,除一般方法(通过三角形全等)外,也可用等线段代换,或用圆心角定理及其推论证明4证明多点共圆的常用方法:(1)证明几个点与某个定点距离相等;(2)如果某两点在某条线段的同旁,证明这两点对这条线段的张角相等;(3)证明凸四边形内对角互补(或外角等于它的内角的对角)5圆中比例线段有关定理常与圆周角、弦切角联合应用,要注意在题中找相等的角,找相似三角形,从而得到线段的比(满分:75分)一、填空
12、题(每小题5分,共40分)1如图,已知AB,CD是O的两条弦,且ABCD,OEAB,OFCD,垂足分别是E,F,则结论,AOBCOD,OEOF,中,正确的有_个2(2010湖南)如图所示,过O外一点P作一条直线与O交于A、B两点已知PA2,点P到O的切线长PT4,则弦AB的长为_3(2010陕西)如图,已知RtABC的两条直角边AC,BC的长分别为3 cm,4 cm,以AC为直径的圆与AB交于点D,则_.4(2009广东)如图,点A,B,C是圆O上的点,且AB4,ACB45,则圆O的面积为_5已知PA是圆O的切线,切点为A,PA2,AC是圆O的直径,PC与圆O交于点B,PB1,则圆O的半径R_
13、.6如图,圆O是ABC的外接圆,过点C的切线交AB的延长线于点D,CD2,AB3.则BD的长为_7(2011天津)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DFCF,AFFBBE421.若CE与圆相切,则线段CE的长为_8(2010天津)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若,则的值为_二、解答题(共35分)9(11分)如图,三角形ABC中,ABAC,O经过点A,与BC相切于B,与AC相交于D,若ADCD1,求O的半径r.10(12分)(2009江苏)如图,在四边形ABCD中,ABCBAD.求证:ABCD.11(12分)(2011江苏)如图
14、,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1r2)圆O1的弦AB交圆O2于点C(O1不在AB上)求证:ABAC为定值学案74几何证明选讲(二)直线与圆的位置关系自主梳理1(1)圆周角弧同弧等弧所对的弧圆周角半圆弦为直径(2)一半2.(1)圆相交弦两条线段长(2)等比中项(3)割线3.圆外切线长4.(1)互补对角(2)对角互补圆内角的对角共圆5(1)半径圆心切线切点圆心(2)外端垂直自我检测1.解析设切点为T,则DTAC,AD2DB2DT,A30,sin A.22解析连接CB,则DCACBA,又ADCACB90,ADCACB.AC2ABAD2612.AC2.3.解析如图,连接CE,A
15、O,AB.根据A,E是半圆周上的两个三等分点,BC为直径,可得CEB90,CBE30,AOB60,故AOB为等边三角形,AD,ODBD1,DF,AFADDF.440解析如图,连接BD,则BDAC,由射影定理知,AB2ADAC32501 600,故AB40.5430解析由切割线定理得PD2PEPF,PE4,EF8,OD4.又ODPD,ODPO,P30,POD602EFD,EFD30.课堂活动区例1 解题导引(1)借用等弦或等弧所对圆周角相等,所对的圆心角相等,进行角的等量代换;同时也可借在同圆或等圆中,相等的圆周角(或圆心角)所对的弧相等,进行弧(或弦)的等量代换(2)本题的证法是证明一条线段等
16、于另一条线段的一半的常用方法证明作直径AF,连接BF,CF,则ABFACF90.又OEAB,O为AF的中点,则OEBF.ACBD,DBCACB90,又AF为直径,BAFBFA90,AFBACB,DBCBAF,即有CDBF.从而得OECD.变式迁移1 证明CM是ACB的平分线,即BCAC,又由割线定理得BMBABNBC,BNACBMBA,又ACAB,BN3AM,在圆O内ACMMCN,AMMN,BN3MN.例2 解题导引证明多点共圆,当它们在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补证明连接EF,因
17、为EM是AEC的角平分线,所以FECFEA2FEM.同理,EFCEFA2EFM.而BCDBADECFBAD(180FECEFC)(180FEAEFA)3602(FEMEFM)3602(180EMF)2EMF180,即BCD与BAD互补所以四边形ABCD内接于圆变式迁移2 (1)证明连接OP,OM,因为AP与O相切于点P,所以OPAP.因为M是O的弦BC的中点,所以OMBC.于是OPAOMA180,由圆心O在PAC的内部,可知四边形APOM的对角互补,所以A,P,O,M四点共圆(2)解由(1)得A,P,O,M四点共圆,所以OAMOPM.由(1)得OPAP.由圆心O在PAC的内部,可知OPMAPM
18、90,所以OAMAPM90.例3 解题导引寻找适当的相似三角形,把几条要证的线段集中到这些相似三角形中,再用圆中角、与圆有关的比例线段的定理找到需要的比例式,使问题得证证明(1)AEDEPCC,ADEAPDPAB.因PE是APC的角平分线,故EPCAPD,PA是O的切线,故CPAB.所以AEDADE.故ADAE.(2)PCEPAD;PAEPBD.又PA是切线,PBC是割线PA2PBPC.故,又ADAE,故AD2DBEC.变式迁移3 证明(1)因为,所以BCDABC.又因为EC与圆相切于点C,故ACEABC,所以ACEBCD.(2)因为ECBCDB,EBCBCD,所以BDCECB,故,即BC2B
19、ECD.课后练习区14解析在同圆或等圆中,等弦所对的圆心角相等,所对的弧相等,所对弦心距相等,故成立,又由,得,正确26解析连接BT,由切割线定理,得PT2PAPB,所以PB8,故AB6.3.解析ADBD(cm),.48解析连接OA,OB,BCA45,AOB90.设圆O的半径为R,在RtAOB中,R2R2AB216,R28.圆O的面积为8.5.解析如图,依题意,AOPA,ABPC,PA2,PB1,P60,在RtCAP中,有2OA2R2tan 602,R.64解析由切割线定理得:DBDADC2,即DB(DBBA)DC2,DB23DB280,DB4.7.解析设BEa,则AF4a,FB2a.AFFB
20、DFFC,8a22,a,AF2,FB1,BE,AE.又CE为圆的切线,CE2EBEA.CE.8.解析PP,PCBPAD,PCBPAD.,.9.解过B点作BEAC交圆于点E,连接AE,BO并延长交AE于F,由题意ABCACBAEB,(2分)又BEAC,CABABE,则ABAC知,ABCACBAEBBAE,(4分)则AEBC,四边形ACBE为平行四边形BFAE.又BC2CDAC2,BC,BF.(8分)设OFx,则解得r.(11分)10证明由ABCBAD得ACBBDA,(3分)故A、B、C、D四点共圆,(5分)从而CABCDB.(7分)再由ABCBAD得CABDBA,因此DBACDB,(10分)所以
21、ABCD.(12分)11.证明如图,连接AO1并延长,分别交两圆于点E和点D.连接BD,CE.因为圆O1与圆O2内切于点A,所以点O2在AD上,故AD,AE分别为圆O1,圆O2的直径(5分)从而ABDACE.(7分)所以BDCE,于是.(10分)所以ABAC为定值(12分)学案75坐标系与参数方程导学目标:1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用自主梳理1极坐标系的概念在平面上取一个定点O,叫做极点;自极点O引一条射线Ox,叫做_;再选定一个长度单位、一个角度
22、单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个_设M是平面上任一点,极点O与点M的距离OM叫做点M的_,记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的_,记为.有序数对(,)叫做点M的_,记作(,)2极坐标和直角坐标的互化把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(,),则它们之间的关系为x_,y_.另一种关系为:2_,tan _.3简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程(,)0,并且坐标适合方程(,)0的点都在曲线上,那么方
23、程(,)0叫做曲线的_(2)常见曲线的极坐标方程圆的极坐标方程_表示圆心在(r,0)半径为|r|的圆;_表示圆心在(r,)半径为|r|的圆;_表示圆心在极点,半径为|r|的圆直线的极坐标方程_表示过极点且与极轴成角的直线;_表示过(a,0)且垂直于极轴的直线;_表示过(b,)且平行于极轴的直线;sin()0sin(0)表示过(0,0)且与极轴成角的直线方程4常见曲线的参数方程(1)直线的参数方程若直线过(x0,y0),为直线的倾斜角,则直线的参数方程为这是直线的参数方程,其中参数l有明显的几何意义(2)圆的参数方程若圆心在点M(a,b),半径为R,则圆的参数方程为00)的参数方程为自我检测1(
24、2010北京)极坐标方程(1)()0(0)表示的图形是()A两个圆 B两条直线C一个圆和一条射线 D一条直线和一条射线2(2010湖南)极坐标方程cos 和参数方程(t为参数)所表示的图形分别是()A圆、直线 B直线、圆C圆、圆 D直线、直线3(2010重庆)直线yx与圆心为D的圆(0,2)交于A、B两点,则直线AD与BD的倾斜角之和为()A. B.C. D.4(2011广州一模)在极坐标系中,直线sin()2被圆4截得的弦长为_5(2010陕西)已知圆C的参数方程为(为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 1,则直线l与圆C的交点的直角坐标为_.探究
25、点一求曲线的极坐标方程例1 在极坐标系中,以(,)为圆心,为半径的圆的方程为_变式迁移1 如图,求经过点A(a,0)(a0),且与极轴垂直的直线l的极坐标方程探究点二极坐标方程与直角坐标方程的互化例2 (2009辽宁)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系曲线C的极坐标方程为cos1,M、N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M、N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程变式迁移2 (2010东北三校第一次联考)在极坐标系下,已知圆O:cos sin 和直线l:sin(),(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线
26、l与圆O公共点的一个极坐标探究点三参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1);(2);(3).变式迁移3 化下列参数方程为普通方程,并作出曲线的草图(1)(为参数);(2) (t为参数)探究点四参数方程与极坐标的综合应用例4 求圆3cos 被直线(t是参数)截得的弦长变式迁移4 (2011课标全国)在直角坐标系xOy中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.本节内容要注意以下两点:一、简
27、单曲线的极坐标方程可结合极坐标系中和的具体含义求出,也可利用极坐标方程与直角坐标方程的互化得出同直角坐标方程一样,由于建系的不同,曲线的极坐标方程也会不同在没有充分理解极坐标的前提下,可先化成直角坐标解决问题二、在普通方程中,有些F(x,y)0不易得到,这时可借助于一个中间变量(即参数)来找到变量x,y之间的关系同时,在直角坐标系中,很多比较复杂的计算(如圆锥曲线),若借助于参数方程来解决,将会大大简化计算量将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的x,y(它们都是参数的函数)的取值范围,也即在消去参数的过程中一定要注意普通方程与参数方程的等价性参数方程化普通方程常用
28、的消参技巧有:代入消元、加减消元、平方后相加减消元等同极坐标方程一样,在没有充分理解参数方程的前提下,可先化成直角坐标方程再去解决相关问题(满分:75分)一、选择题(每小题5分,共25分)1在极坐标系中,与点(3,)关于极轴所在直线对称的点的极坐标是()A(3,) B(3,) C(3,) D(3,)2曲线的极坐标方程为2cos21的直角坐标方程为()Ax2(y)2 B(x)2y2Cx2y2 Dx2y213(2010湛江模拟)在极坐标方程中,曲线C的方程是4sin ,过点(4,)作曲线C的切线,则切线长为()A4 B. C2 D24(2010佛山模拟)已知动圆方程x2y2xsin 22ysin(
29、)0(为参数),那么圆心的轨迹是()A椭圆 B椭圆的一部分C抛物线 D抛物线的一部分5(2010安徽)设曲线C的参数方程为(为参数),直线l的方程为x3y20,则曲线C上到直线l距离为的点的个数为()A1 B2 C3 D4二、填空题(每小题4分,共12分)6(2010天津)已知圆C的圆心是直线(t为参数)与x轴的交点,且圆C与直线xy30相切,则圆C的方程为_7(2011广东)已知两曲线参数方程分别为(0)和(tR),它们的交点坐标为_8(2010广东深圳高级中学一模)在直角坐标系中圆C的参数方程为(为参数),若以原点O为极点,以x轴正半轴为极轴建立极坐标系,则圆C的极坐标方程为_三、解答题(
30、共38分)9(12分)(2011江苏)在平面直角坐标系xOy中,求过椭圆(为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程10(12分)(2010福建)在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为2sin .(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A,B.若点P的坐标为(3,),求|PA|PB|.11(14分)(2010课标全国)已知直线C1:(t为参数),圆C2:(为参数)(1)当时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的
31、中点,当变化时,求P点轨迹的参数方程,并指出它是什么曲线学案75坐标系与参数方程自主梳理1极轴极坐标系极径极角极坐标2.cos sin x2y2(x0)3.(1)极坐标方程(2)2rcos 2rsin r(R)cos asin b自我检测1C2.A3.C445(1,1),(1,1)解析ysin ,直线l的直角坐标方程为y1.由得x2(y1)21.由得或直线l与圆C的交点的直角坐标为(1,1)和(1,1)课堂活动区例1 解题导引求曲线的极坐标方程的步骤:建立适当的极坐标系,设P(,)是曲线上任意一点;由曲线上的点所适合的条件,列出曲线上任意一点的极径和极角之间的关系式;将列出的关系式进行整理、化
32、简,得出曲线上的极坐标方程;证明所得方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,这一证明可以省略答案asin ,0解析圆的直径为a,设圆心为C,在圆上任取一点A(,),则AOC或,即AOC|.又acosAOCacos|asin .圆的方程是asin ,0.变式迁移1 解设P(,)是直线l上任意一点,OPcos OA,即cos a,故所求直线的极坐标方程为cos a.例2 解题导引直角坐标方程化为极坐标方程比较容易,只要运用公式xcos 及ysin 直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如cos ,sin ,2的形式
33、,进行整体代换其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验解(1)由cos1得1.从而C的直角坐标方程为xy1,即xy2,当0时,2,所以M(2,0)当时,所以N.(2)M点的直角坐标为(2,0)N点的直角坐标为(0,)所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,)变式迁移2 解(1)圆O:cos sin ,即2cos sin ,圆O的直角坐标方程为x2y2xy,即x2y2xy0.直线l:sin(),即sin cos 1,则直线l的直角坐标方程为yx1,即xy10.(2)由得故直线l与圆O
34、公共点的一个极坐标为(1,)例3 解题导引参数方程通过消去参数化为普通方程对于(1)直接消去参数k有困难,可通过两式相除,先降低k的次数,再运用代入法消去k;对于(2)可运用恒等式(sin cos )21sin 2消去;对于(3)可运用恒等式()2()21消去t.另外,参数方程化为普通方程时,不仅要消去参数,还应注意普通方程与原参数方程的取值范围保持一致解(1)两式相除,得k.将k代入,得x.化简,得所求的普通方程是4x2y26y0(y6)(2)由(sin cos )21sin 22(1sin 2),得y22x.又x1sin 20,2,得所求的普通方程是y22x,x0,2(3)由()2()21
35、,得x24y21.又x1,得所求的普通方程是x24y21(x1)变式迁移3 解(1)由y2(sin cos )21sin 212x,得y22x1.sin 2,x.sin cos ,y.故所求普通方程为y22 (x,y),图形为抛物线的一部分图形如图甲所示(2)由x2y2221及x0,xy0知,所求轨迹为两段圆弧x2y21 (0x1,0y1或1x0,1y0)图形如图乙所示例4 解题导引一般将参数方程化为普通方程,极坐标方程化成直角坐标方程解决解将极坐标方程转化成直角坐标方程:3cos 即:x2y23x,即(x)2y2.即:2xy30.所以圆心到直线的距离d0,即直线经过圆心,所以圆被直线截得的弦
36、长为3.变式迁移4 解(1)设P(x,y),则由条件知M(,)由于M点在C1上,所以即从而C2的参数方程为(为参数)(2)曲线C1的极坐标方程为4sin ,曲线C2的极坐标方程为8sin .射线与C1的交点A的极径为14sin,射线与C2的交点B的极径为28sin.所以|AB|21|2.课后练习区1B由于极径不变,极角关于极轴对称,其对称点为(3,)故选B.2B2cos21,2cos 即x2y2x,(x)2y2.3C4sin 化为普通方程为x2(y2)24,点(4,)化为直角坐标为(2,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为2,故选C.4D圆心轨迹的参数方程为
37、即消去参数得y212x(x),故选D.5B曲线C的方程为(为参数),(x2)2(y1)29,而l为x3y20,圆心(2,1)到l的距离d.又3,有2个点6(x1)2y22解析直线(t为参数)与x轴的交点为(1,0),故圆C的圆心为(1,0)又圆C与直线xy30相切,圆C的半径为r,圆C的方程为(x1)2y22.7(1,)解析将两曲线的参数方程化为一般方程分别为y21(0y1,0,故可设t1,t2是上述方程的两实根,所以又直线l过点P(3,),故由上式及t的几何意义得|PA|PB|t1|t2|t1t23.(12分)方法二(1)同方法一(2)因为圆C的圆心为点(0,),半径r,直线l的普通方程为y
38、x3.(8分)由得x23x20.解得或(10分)不妨设A(1,2),B(2,1),又点P的坐标为(3,),故|PA|PB|3.(12分)11解(1)当时,C1的普通方程为y(x1),C2的普通方程为x2y21,联立方程组解得C1与C2的交点坐标为(1,0),(,)(7分)(2)C1的普通方程为xsin ycos sin 0.A点坐标为(sin2,cos sin ),故当变化时,P点轨迹的参数方程为(为参数)(9分)P点轨迹的普通方程为(x)2y2.(12分)故P点轨迹是圆心为(,0),半径为的圆(14分)学案76不等式选讲(一)绝对值不等式导学目标:1.理解绝对值的几何意义,并能利用含绝对值不
39、等式的几何意义证明以下不等式:(1)|ab|a|b|,(2)|ab|ac|cb|.2.会利用绝对值的几何意义求解以下类型的不等式:|axb|c;|axb|c;|xa|xb|c.自主梳理1含_的不等式叫做绝对值不等式2解含有绝对值的不等式的方法关键是去掉绝对值符号,基本方法有如下几种:(1)分段讨论:根据|f(x)|去掉绝对值符号(2)利用等价不等式:|f(x)|g(x)g(x)f(x)g(x);|f(x)|g(x)f(x)g(x)或f(x)g(x)(3)两端同时平方:即运用移项法则,使不等式两边都变为非负数,再平方,从而去掉绝对值符号3形如|xa|xb|c (ab)与|xa|xb|c (ab)
40、的绝对值不等式的解法主要有三种:(1)运用绝对值的几何意义;(2)_;(3)构造分段函数,结合函数图象求解4(1)定理:如果a,b,c是实数,则|ac|ab|bc|,当且仅当_时,等号成立(2)重要绝对值不等式|a|b|ab|a|b|.使用时(特别是求最值时)要注意等号成立的条件,即|ab|a|b|ab0;|ab|a|b|ab0;|a|b|ab|b(ab)0;|a|b|ab|b(ab)0;注:|a|b|ab|a|ab|b|(ab)b|ab|b|b(ab)0.同理可得|a|b|ab|b(ab)0.自我检测1(2010江西)不等式的解集是()A(0,2) B(,0)C(2,) D(,0)(0,)2
41、(2011天津)已知集合AxR|x3|x4|9,BxR|x4t6,t(0,),则集合AB_.3(2011潍坊模拟)已知不等式|x2|x3|a的解集不是空集,则实数a的取值范围是()Aa5 Da54若不等式|x1|x2|a无实数解,则a的取值范围是_5(2009福建)解不等式|2x1|x|1.探究点一解绝对值不等式例1 解下列不等式:(1)17x;(3)|x1|2x1|2.变式迁移1 (2011江苏)解不等式x|2x1|m.(1)若不等式有解;(2)若不等式解集为R;(3)若不等式解集为.分别求出实数m的取值范围变式迁移2设函数f(x)|x1|x2|,若f(x)a对xR恒成立,求实数a的取值范围
42、探究点三绝对值三角不等式定理的应用例3“|xA|,且|yA|”是“|xy|”(x,y,A,R)的()A充分而不必要条件B必要而不充分条件C充要条件 D既不充分也不必要条件变式迁移3(1)求函数y|x2|x2|的最大值;(2)求函数y|x3|x2|的最小值转化与化归思想的应用例(10分)设aR,函数f(x)ax2xa (1x1),(1)若|a|1,求证:|f(x)|;(2)求a的值,使函数f(x)有最大值.多角度审题第(1)问|f(x)|f(x),因此证明方法有两种,一是利用放缩法直接证出|f(x)|;二是证明f(x)亦可第(2)问实质上是已知f(x)的最大值为,求a的值由于x1,1,f(x)是
43、关于x的二次函数,那么就需判断对称轴对应的x值在不在区间1,1上【答题模板】证明(1)方法一1x1,|x|1.又|a|1,|f(x)|a(x21)x|a(x21)|x|x21|x|1|x|2|x|2.3分若|a|1,则|f(x)|.5分方法二设g(a)f(x)ax2xa(x21)ax.1x1,当x1,即x210时,|f(x)|g(a)|1;1分当1x1即x210时,g(a)(x21)ax是单调递减函数2分|a|1,1a1,g(a)maxg(1)x2x12;3分g(a)ming(1)x2x12.4分|f(x)|g(a)|.5分(2)当a0时,f(x)x,当1x1时,f(x)的最大值为f(1)1,
44、不满足题设条件,a0.6分又f(1)a1a1,f(1)a1a1.故f(1)和f(1)均不是最大值,7分f(x)的最大值应在其对称轴上的顶点位置取得,命题等价于,9分解得,a2.即当a2时,函数f(x)有最大值.10分【突破思维障碍】由于|a|1,f(x)的表达式中有两项含有a,要想利用条件|a|1,必须合并含a的项,从而找到解题思路;另外,由于x的最高次数为2,而a的最高次数为1,把ax2xa看作关于a的函数更简单,这两种方法中,对a的合并都是很关键的一步【易错点剖析】在第(1)问中的方法一中,如果不合并含a的项,就无法正确应用条件|a|1,从而导致出错或证不出;方法二也需要先合并含a的项后,
45、才容易把f(x)看作g(a)解含有绝对值不等式时,去掉绝对值符号的方法主要有:公式法、分段讨论法、平方法、几何法等这几种方法应用时各有利弊,在解只含有一个绝对值的不等式时,用公式法较为简便;但是若不等式含有多个绝对值时,则应采用分段讨论法;应用平方法时,要注意只有在不等式两边均为正的情况下才能运用因此,在去绝对值符号时,用何种方法需视具体情况而定(满分:75分)一、选择题(每小题5分,共25分)1不等式|x2x|2的解集为()A(1,2) B(1,1)C(2,1) D(2,2)2(2011郑州期末)设|a|1,|b|2 B|ab|ab|2C|ab|ab|2 D不能比较大小3不等式|x3|x1|
46、a23a对任意实数x恒成立,则实数a的取值范围为()A(,14,) B(,25,)C1,2 D(,12,)4若不等式|8x9|2的解集相等,则实数a、b的值分别为()Aa8,b10 Ba4,b9Ca1,b9 Da1,b25若关于x的不等式|x1|x3|a22a1在R上的解集为,则实数a的取值范围是()Aa3 B1a3C1a2 D1a3二、填空题(每小题4分,共12分)6给出以下三个命题:若|ab|1,则|a|b|1;若a、bR,则|ab|2|a|ab|;若|x|3,则.其中所有正确命题的序号是_7(2010陕西)不等式|x3|x2|3的解集为_8(2011深圳模拟)若不等式|x1|x3|a对任
47、意的实数x恒成立,则实数a的取值范围是_三、解答题(共38分)9(12分)(2010福建)已知函数f(x)|xa|.(1)若不等式f(x)3的解集为x|1x5,求实数a的值;(2)在(1)的条件下,若f(x)f(x5)m对一切实数x恒成立,求实数m的取值范围10(12分)(2009辽宁)设函数f(x)|x1|xa|.(1)若a1,解不等式f(x)3;(2)如果xR,f(x)2,求a的取值范围11(14分)对于任意实数a(a0)和b,不等式|ab|ab|a|(|x1|x2|)恒成立,试求实数x的取值范围学案76不等式选讲(一)绝对值不等式自主梳理1绝对值符号3.(2)零点分区间讨论法4(1)(a
48、b)(bc)0自我检测1A,0,0x2.2x|2x5解析|x3|x4|9,当x3时,x3(x4)9,即4x4时,x3x49,即4x5.综上所述,Ax|4x5又x4t6,t(0,),x262,当t时取等号Bx|x2,ABx|2x53D由绝对值的几何意义知|x2|x3|5,),因此要使|x2|x3|a有解集,需a5.4a3解析由绝对值的几何意义知|x1|x2|的最小值为3,而|x1|x2|a无解,知a3.5解当x0时,原不等式可化为2x10,又x0,x不存在;当0x时,原不等式可化为2x10,又0x,0x;当x时,原不等式可化为2x1x1,解得x2,又x,x2.综上,原不等式的解集为x|0x2课堂
49、活动区例1 解题导引(1)绝对值不等式的关键是去掉绝对值符号其方法主要有:利用绝对值的意义;利用公式;平方、分区间讨论等(2)利用平方法去绝对值符号时,应注意不等式两边非负才可进行(3)零点分段法解绝对值不等式的步骤:求零点;划区间、去绝对值号;分别解去掉绝对值的不等式;取每个结果的并集,注意在分段时不要遗漏区间的端点值解(1)原不等式等价于不等式组,即,解得1x1或3x5,所以原不等式的解集为x|1x1,或37x,可得2x57x或2x52,或x4.原不等式的解集是x|x2(3)由题意x1时,|x1|0,x时,2x10(以下分类讨论)所以当x时,原不等式等价于得x.当x1时,原不等式等价于得x
50、1时,原不等式等价于得x无解由得原不等式的解集为x|x0变式迁移1 解原不等式可化为或解得x或2x.所以原不等式的解集是x|2x例2解题导引恒成立问题的解决方法(1)f(x)m恒成立,须有f(x)maxm恒成立,须有f(x)minm;(3)不等式的解集为R,即不等式恒成立;(4)不等式的解集为,即不等式无解解因为|x2|x3|的几何意义为数轴上任意一点P(x)与两定点A(2)、B(3)距离的差即|x2|x3|PA|PB|.易知(|PA|PB|)max1,(|PA|PB|)min1.即|x2|x3|1,1(1)若不等式有解,m只要比|x2|x3|的最大值小即可,即m1.(2)若不等式的解集为R,
51、即不等式恒成立,m小于|x2|x3|的最小值即可,所以ma恒成立,只须1a.即实数a的取值范围为(,1)例3解题导引对绝对值三角不等式|a|b|ab|a|b|.(1)当ab0时,|ab|a|b|;当ab0时,|ab|a|b|.(2)该定理可以推广为|abc|a|b|c|,也可强化为|a|b|ab|a|b|,它们经常用于含绝对值的不等式的推证(3)利用“”成立的条件可求函数的最值A|xy|xA(yA)|,由三角不等式定理|a|b|ab|a|b|得:|xy|xA|yA|.反过来由|xy|,得不出|xA|且|yA|2时,“”成立故函数y|x2|x2|的最大值为4.(2)|x3|x2|(x3)(x2)
52、|5.当2x3时,取“”故y|x3|x2|的最小值为5.课后练习区1A|x2x|2,2x2x2,即,.1x0 (b0时同理)(1)当1ab时,|ab|ab|abab2a2,(2)当bab时,|ab|ab|abab2b2,(3)当ba1时,|ab|ab|abab2a2.综上可知|ab|ab|2.方法二(|ab|ab|)22a22b22|a2b2|ab|ab|2.3A由|x3|x1|的几何意义知,|x3|x1|4,4,即|x3|x1|的最大值是4,要使|x3|x1|a23a对任意实数x恒成立,只需a23a4恒成立即可所以a(,14,)4B由|8x9|7,得78x97,即168x2,2x.由题意知2
53、,为方程ax2bx20的两根,.5B由|x1|x3|的几何意义知|x1|x3|2,即|x1|x3|的最小值为2.当a22a12时满足题意,a22a30,即(a1)(a3)0,1a3.6解析|a|b|ab|1,|a|3,即|.故、都正确7x|x1解析原不等式可化为:或或x或1x0时,a4,当且仅当a2时,取等号,当a0,显然符合题意9解方法一(1)由f(x)3得|xa|3,解得a3xa3.(3分)又已知不等式f(x)3的解集为x|1x5,所以解得a2.(6分)(2)当a2时,f(x)|x2|,设g(x)f(x)f(x5),于是g(x)|x2|x3|(8分)所以当x5;当3x2时,g(x)5;当x
54、2时,g(x)5.综上可得,g(x)的最小值为5.(10分)从而若f(x)f(x5)m,即g(x)minm对一切实数x恒成立,则m的取值范围为(,5(12分)方法二(1)同方法一(6分)(2)当a2时,f(x)|x2|.设g(x)f(x)f(x5)|x2|x3|.由|x2|x3|(x2)(x3)|5(当且仅当3x2时等号成立)得,g(x)的最小值为5.(10分)从而,若f(x)f(x5)m,即g(x)minm对一切实数x恒成立,则m的取值范围为(,5(12分)10解(1)当a1时,f(x)|x1|x1|.由f(x)3得|x1|x1|3.当x1时,不等式化为1x1x3,即2x3.不等式组的解集为
55、.(2分)当11时,不等式化为x1x13,即2x3.不等式组的解集为.综上得,f(x)3的解集为.(6分)(2)若a1,f(x)2|x1|,不满足题设条件若a1,f(x)(11分)f(x)的最小值为a1.所以xR.f(x)2的充要条件是|a1|2,从而a的取值范围为(,13,)(12分)11解由题知,|x1|x2|恒成立故|x1|x2|不大于的最小值(2分)|ab|ab|abab|2|a|,当且仅当(ab)(ab)0时取等号,的最小值等于2.(6分)x的取值范围即为不等式|x1|x2|2的解解不等式得x.(14分)学案77不等式选讲(二)证明不等式的基本方法导学目标:1.了解证明不等式的基本方
56、法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式自主梳理1三个正数的算术几何平均不等式:如果a,b,c0,那么_,当且仅当abc时等号成立2基本不等式(基本不等式的推广):对于n个正数a1,a2,an,它们的算术平均不小于它们的几何平均,即,当且仅当_时等号成立3二维形式的柯西不等式及推论:若a,b,c,d都是实数,则(a2b2)(c2d2)(acbd)2,当且仅当adbc时等号成立;|acbd|,当且仅当adbc时等号成立;|ac|bd|,当且仅当_时等号成立4证明不等式的常用五种方法(1)比较法:比较法是证明不等式最基本的方法,
57、具体有作差比较和作商比较两种,其基本思想是_与0比较大小或_与1比较大小(2)综合法:从已知条件出发,利用定义、_、_、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法也叫顺推证法或由因导果法(3)分析法:从要证明的结论出发,逐步寻求使它成立的_条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法也叫逆推证法或执果索因法(4)反证法反证法的定义先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实
58、等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法反证法的特点先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾(5)放缩法定义:证明不等式时,通过把不等式中的某些部分的值_或_,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法思路:分析观察证明式的特点,适当放大或缩小是证题关键自我检测1已知Ma2b2,Nabab1,则M,N的大小关系为()AMN BMb0,p,q,那么()Apq BpqCpQ4已知ab0,nN*,则使不等式a2n成立的n的最大值为()A4 B8 C10 D165(2011南
59、阳月考)已知a,b,c0,且abc,设M,N,则M与N的大小关系是_.探究点一比较法证明不等式例1已知a0,b0,求证:.变式迁移1(2011福建)设不等式|2x1|b0,求证:0,求证: a2.转化与化归思想的应用例(10分)已知f(x)x2pxq.求证:(1)f(1)f(3)2f(2)2;(2)|f(1)|、|f(2)|、|f(3)|中至少有一个不小于.多角度审题已知f(x),要证f(1)f(3)2f(2)2,只须化简左边式子,看是怎样的形式,然后才能视情况而定如何证明求证|f(1)|、|f(2)|、|f(3)|中至少有一个不小于包括:|f(1)|、|f(2)|、|f(3)|中有一个大于等
60、于,其余两个小于;三个中有2个大于等于,另一个小于;三个都大于等于.如果从正面证明,将有7种情况需要证明,非常繁杂,可考虑用反证法证明【答题模板】证明(1)f(1)f(3)2f(2)(1pq)(93pq)2(42pq)2.2分(2)假设|f(1)|、|f(2)|、|f(3)|都小于,则|f(1)|2|f(2)|f(3)|2;(2)将分子或分母放大(缩小),如, (kN*且k1)等(满分:75分)一、选择题(每小题5分,共20分)1(2011烟台月考)已知a、b、mR且ab,则()A.B.C.D.与间的大小不能确定2(2010黄冈期中)设a、bR,且ab,ab2,则必有()A.ab1 Bab1C
61、ab1 D1ab3设aR且a0,以下四个式子中恒大于1的个数是()a31;a22a2;a;a2.A1 B2 C3 D44(2011保定调研)在下列不等式中,一定成立的是()A48aabbaCa3a2a1 D()m20,y0,lg 2xlg 8xlg 2,则的最小值为_7设xa2b25,y2aba24a,若xy,则实数a,b应满足的条件为_三、解答题(共43分)8(10分)已知x,y,z均为正数,求证:.9(10分)(2011包头模拟)已知正数a、b、c满足ab2c,求证:ca(xyz)学案77不等式选讲(二)证明不等式的基本方法自主梳理1.2.a1a2an3.adbc且abcd04.(1)差商
62、(2)公理定理(3)充分(5)放大缩小自我检测1CMNa2b2abab1(2a22b22ab2a2b2)(a22abb2)(a22a1)(b22b1)(ab)2(a1)2(b1)20,当且仅当ab1时“”成立MN.2Ap2q2ab2ab2()0.pq.3CQP.PQ.4Bna2,b(ab) (20)a2a228(a2,b1时取“”)即a2的最小值为8,nmax8.5MN解析a,b,c0,且abc,M设f(x) (x0),f(x)0,即f(x)在(0,)上为增函数,f(ab)f(c),即,MN.课堂活动区例1解题导引不等式左、右两边是多项式形式,可用作差或作商比较法,也可用分析法、综合法证明()
63、,又0,0,()20,()0.故.变式迁移1解(1)由|2x1|1得12x11,解得0x1,所以Mx|0x1(2)由(1)和a,bM可知0a1,0b0,故ab1ab.例2解题导引本例不等式中的a、b、c具有同等的地位,证明此类型不等式往往需要通过系数的变化,利用基本不等式进行放缩,得到要证明的结论证明a、b、c均为正数,当且仅当ab时等号成立;同理:,当且仅当bc时等号成立;,当且仅当ac时等号成立三个不等式相加即得,当且仅当abc时等号成立变式迁移2证明x是正实数,由基本不等式知,x12,1x22x,x312,故(x1)(x21)(x31)22x28x3 (当且仅当x1时等号成立)例3解题导
64、引当要证的不等式较复杂,已知条件信息量太少,已知与待证间的联系不明显时,一般可采用分析法分析法是步步寻求不等式成立的充分条件,而实际操作时往往是先从要证的不等式出发,寻找使不等式成立的必要条件,再考虑这个必要条件是否充分,这种“逆求”过程能培养学生的发散思维能力,也是分析问题、解决问题时常用的思考方法证明欲证,只需证b0,只需证,即1.欲证1,只需证2,即.该式显然成立欲证1,只需证2,即.该式显然成立1成立,且以上各步均可逆0,只须证22,从而只要证2 ,只要证42,即a22,而上述不等式显然成立,故原不等式成立课后练习区1A0,.2C当a0,b0时,2ab2,0ab1;当ab0时,ab1.
65、又(ab)2a2b22ab2,1,又ab.选C.3A只有a221,故选A.4D取ab1,显然有4444161,4884,A不成立;abab,当ab0时,ab1,B不一定成立;a3a2a1(a1)(a21),当a1时,C不成立;()272,2(2)272,又m2m21,()m2y,得a2b252aba24a(ab1)2(a2)20,所以有ab1或a2.8证明因为x,y,z均为正数,所以,同理可得,(5分)当且仅当xyz时,以上三式等号都成立,将上述三个不等式两边分别相加,并除以2,得.(10分)9证明要证cac,只需证ac,(2分)即只要证|ac|.(4分)两边都是非负数,只要证(ac)2c2ab,(6分)只要证a22acab,即只要证a(ab)0,只需证ab2c,这就是已知条件,且以上各步都可逆,ca(xyz),即(xyz)(13分)