1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列多边形中,内角和最大的是()ABCD2、如图,已知和都是等腰三
2、角形,交于点F,连接,下列结论:;平分;其中正确结论的个数有()A1个B2个C3个D4个3、如图,已知能直接判断的方法是()ABCD4、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D85、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为() 线 封 密 内 号学级年名姓 线 封 密 外 A4B3C2D1二、多选题(5小题,每小题4分,共计20分)1、如图,则下列结论正确的是()ABCD2、如图,点P在AOB的平分线上,若使AOPBOP,则需添加的一个条件是()AOA=OBBAP=BPCAOP=BOPDAPO=BPO
3、3、如图,在中,点,分别是边,上的点,且,相交于点,若点是的重心,则以下结论,其中一定正确结论有()A线段,是的三条角平分线B的面积是面积的一半C图中与面积相等的三角形有5个D的面积是面积的4、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个不能为()A正六边形B正五边形C正四边形D正三角形5、已知等腰三角形的周长是12,且各边长都为整数,则各边的长可能是()A2,2,8B5,5,2C4,4,4D3,3,5第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在ABC中,ACB90,ACBC,BECE,ADCE于D,
4、AD2,BE1则DE_2、如图,点D在线段BC上,ACBC,AB8cm,AD6cm,AC4cm,则在ABD中,BD边上的高是_cm 线 封 密 内 号学级年名姓 线 封 密 外 3、如图,BE交AC于点M,交CF于点D,AB交CF于点N,给出的下列五个结论中正确结论的序号为 ;4、如图,在矩形ABCD中,AB8cm,AD12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动当v为_时,ABP与PCQ全等5、如图,四边形ABCD四边形ABCD,则A
5、的大小是_四、解答题(5小题,每小题8分,共计40分)1、如图(1),AB4cm,ACAB,BDAB,ACBD3cm点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t1时,ACP与BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“ACAB,BDAB”改为“CABDBA60”,其他条件不变设点Q的运动速度为xcm/s,是否存在实数x,使得ACP与BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由2、如图1,点P、Q分别
6、是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。3、如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由 线 封 密 内 号学级年名姓
7、 线 封 密 外 4、如图,已知ABC,ACAB,C45请用尺规作图法,在AC边上求作一点P,使PBC45(保留作图痕迹不写作法)5、如图,ABC中,B2C,AE平分BAC(1)若ADBC于D,C35,求DAE的大小;(2)若EFAE交AC于F,求证:C2FEC-参考答案-一、单选题1、D【解析】【分析】根据多边形内角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键2
8、、C【解析】【分析】证明BADCAE,再利用全等三角形的性质即可判断;由BADCAE可得ABF=ACF,再由ABF+BGA=90、BGA=CGF证得BFC=90即可判定;分别过A作AMBD、ANCE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分BFE,即可判定;由AF平分BFE结合即可判定【详解】解:BAC=EAD 线 封 密 内 号学级年名姓 线 封 密 外 BAC+CAD=EAD+CAD,即BAD=CAE在BAD和CAE中AB=AC, BAD=CAE,AD=AEBADCAEBD=CE故正确;BADCAEABF=ACFABF+BGA=90、BGA=CGFACF+BGA=90
9、,BFC=90故正确;分别过A作AMBD、ANCE垂足分别为M、NBADCAESBAD=SCAE, BD=CEAM=AN平分BFE,无法证明AF平分CAD故错误;平分BFE,故正确故答案为C【考点】本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键3、A【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据三角形全等的判定定理解答.【详解】在ABC和DCB中,,(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.4、
10、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键5、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,正确;,由三角
11、形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.二、多选题1、ACD【解析】【分析】先证出(AAS),得,等量代换得,故C正确;证出(ASA),得到EM=FN,故A正确;根据ASA证出,故D正确;若,则,但不一定为,故B错误;即可得出结果【详解】解:在和中,(AAS),故C选项说法正确,符合题意;在和中,(ASA),EM=FN,故A选项说法正确,符合题意;在和中, 线 封 密 内 号学级年名姓 线 封 密 外 (ASA),故D选项说法正确,符合题意;
12、若,则,但不一定为,故B选项说法错误,不符合题意;故选ACD【考点】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质2、AD【解析】【分析】由已知可知一边一角对应相等,再结合各选项根据全等三角形的判定方法逐一进行判断即可【详解】点P在AOB的平分线上, ,又有 ,A、若 ,可用边角边证明AOPBOP,故本选项符合题意;B、若 ,是边边角,不能证明AOPBOP,故本选项不符合题意;C、若,只有一对角,一对边对应相等,不能证明AOPBOP,故本选项不符合题意;D、若 ,可用角边角证明AOPBOP,故本选项符合题意;故选:AD【考点】本题主要考查了全等三角形的判定,熟练掌
13、握全等三角形的判定方法边角边、角边角、边边边是解题的关键3、BCD【解析】【分析】根据三角形重心的性质分别判断即可;【详解】三角形的重心是三角形三条边中线的交点,线段,是的三条中线,不是角平分线,故A错误;三角形的重心是三角形三条边中线的交点,的面积是面积的一半,故B正确;三角形的重心是三角形三条边中线的交点,图中与面积相等的三角形有5个,故C正确;三角形的重心是三角形三条边中线的交点,重心到顶点的距离与重心到对边中点的距离之比是,的面积是面积的,故D正确;故选BCD【考点】本题主要考查了重心的定义理解,准确分析判定是解题的关键4、ABD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】
14、【分析】平面镶嵌要求多边形在同一个顶点处的所有角的和为 根据平面镶嵌的要求逐一求解各选项涉及的多边形在一个顶点处的所有的角之和,从而可得答案.【详解】解: 一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形, 在顶点处的四个角的和为: 而正三角形、正四边形、正六边形的每一个内角依次为: 当第四个多边形为正六边形时, 故符合题意;当第四个多边形为正五边形时, 故符合题意;当第四个多边形为正四边形时, 故不符合题意;当第四个多边形为正三角形时, 故符合题意;故选:【考点】本题考查的是平面镶嵌,熟悉平面镶嵌时,围绕在一个顶点处的所有的角组成一个周角是解题的关
15、键.5、BC【解析】【分析】根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边结合题目条件“周长为12”,可得出正确答案【详解】A.2+22,5-54,4-45,3-35;但3+3+512;排除故选:BC【考点】本题主要考查了能够组成三角形三边之间的关系:两边之和大于大三边,两边之差小于第三边;注意结合题目条件“周长为12”三、填空题1、1【解析】【分析】先证明ACDCBE,再求出DE的长,解决问题【详解】解:BECE于E,ADCE于D, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:1【考点】此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键2、
16、4cm【解析】【分析】从三角形的一个顶点向它对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高这条边叫做底【详解】因为ACBC,所以三角形ABD中,BD边上的高是:AC=4cm故答案为:4cm【考点】考核知识点:三角形的高理解三角形的高的定义是关键3、;【解析】【分析】先证明ABEACF,然后根据全等三角形的性质即可判定;利用全等三角形的性质即可判定;根据ASA即可证明三角形全等;无法证明该结论;根据ASA证明三角形全等即可【详解】解:在ABE和ACF中,ABEACF(AAS),BAE=CAF,BE=CF,故正确,BAE-BAC=CAF-BAC,即1=2,故正确,ABEACF,AB=A
17、C,在CAN和BAM中,CANBAM(ASA),故正确,CD=DN不能证明成立,故错误在AFN和AEM中,AFNAEM(ASA),故正确结论中正确结论的序号为;故答案为;【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件4、2或【解析】【详解】可分两种情况:ABPPCQ得到BPCQ,ABPC,ABPQCP得到BACQ,PBPC,然后分别计算出t的值,进而得到v的值【解答】解:当BPCQ,ABPC时,ABPPCQ,AB8cm,PC8cm,BP1284(cm),2t4,解得:t2,CQBP4cm,v24,解得:v2
18、;当BACQ,PBPC时,ABPQCP,PBPC,BPPC6cm,2t6,解得:t3,CQAB8cm,v38,解得:v,综上所述,当v2或时,ABP与PQC全等,故答案为:2或【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键5、95【解析】【分析】根据两个多边形全等,则对应角相等四边形以及内角和即可完成【详解】四边形ABCD四边形ABCDD=D=130四边形ABCD的内角和为360A=360-B-C-D=95故答案为:95【考点】本题考查了多边形全等的性质、多边形的内角和定理,掌握多边形全等的性质是关键四、解答题1、
19、(1)全等,理由见详解;PCPQ,理由见解析;(2)存在,或【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)利用SAS证得ACPBPQ,得出ACP=BPQ,进一步得出APC+BPQ=APC+ACP=90得出结论即可;(2)由ACPBPQ,分两种情况:AC=BP,AP=BQ,AC=BQ,AP=BP,建立方程组求得答案即可【详解】解:(1)当时,又,在和中,即线段与线段垂直(2)若,则,则,解得:;若,则,则,解得:;综上所述,存在或使得与全等【考点】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等在解题时注意分类讨论思想的运用2、(1)见解析;
20、(2)CMQ=60,不变;(3)当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120,不变【解析】【分析】(1)利用SAS可证全等;(2)先证ABQCAP,得出BAQ=ACP,通过角度转化,可得出CMQ=60;(3)存在2种情况,一种是PQB=90,另一种是BPQ=90,分别根据直角三角形边直角的关系可求得t的值;(4)先证PBCACQ,从而得出BPC=MQC,然后利用角度转化可得出CMQ=120【详解】(1)证明:在等边三角形ABC中,AB=AC,B=CAP=60又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ;(2)CMQ=60不变 线 封
21、密 内 号学级年名姓 线 封 密 外 等边三角形中,AB=AC,B=CAP=60又由条件得AP=BQ,ABQCAP(SAS),BAQ=ACP,CMQ=ACP+CAM=BAQ+CAM=BAC=60;(3)设时间为t,则AP=BQ=t,PB=4-t,当PQB=90时,B=60,PB=2BQ,得4-t=2t,t=;当BPQ=90时,B=60,BQ=2BQ,得t=2(4-t),t=;当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120不变,在等边三角形中,AB=AC,B=CAP=60,PBC=ACQ=120,又由条件得BP=CQ,PBCACQ(SAS),BPC=MQC,又PCB=MCQ,CMQ=P
22、BC=180-60=120【考点】本题考查动点问题中三角形的全等,解题关键是找出图形中的全等三角形,利用全等三角形的性质进行角度转化,得出需要的结论3、(1)证明见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EAO,根据等腰三角形的性质推出即可【详解】(1)证明:CDAB,BEAC,ADC=AEB=90,ACD和ABE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC, 线 封 密 内 号学级年名姓 线 封 密 外 CDAB,BEAC,ADC=AEB=90在
23、RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC4、详见解析【解析】【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使PBC45即可【详解】解: 作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B为圆心,以CD长为半径画弧,交BC于F,(3)以点F为圆心,以DE长为半径画弧,交前弧于点M,(3)连接BM,并延长BM与AC交于点P,则点P即为所求如图,点P即为所求【考点】本题考查了作图基本作图解决本题的关键是掌握基本作图方法5、 (1)17.5;(2)证明过程见解析【解析】【分析】(1)首先计算出B,BA
24、C的度数,根据AE是BAC的角平分线可得EAC=37.5,再根据RtADC中直角三角形两锐角互余可得DAC的度数,进而可得答案;(2)过A作ADBC于D,证明DAE=FEC,由三角形内角和定理得到EAC=90-C,进而可得DAE=DAC-EAC,利用等量代换可得DAE=C即可求解【详解】解:(1) 解:C=35,B=2C,B=70,在ABC中,由内角和定理可知:BAC=180-B-C=180-70-35=75,AE平分BAC,EAC=37.5,ADBC,ADC=90, 线 封 密 内 号学级年名姓 线 封 密 外 在RtADC中,两锐角互余,DAC=90-35=55,DAE=55-37.5=17.5,故答案为:17.5;(2)过A点作ADBC于D点,如下图所示:EFAE,AEF=90,AED+FEC=90,DAE+AED=90,DAE=FEC,AE平分BAC,EAC=BAC=(180-B-C)=(180-3C)=90-C,DAE=DAC-EAC,DAE=DAC-(90-C)=(90-C)-(90-C)=C,FEC=C,C=2FEC【考点】此题主要考查了三角形内角和定理,角平分线的定义,直角三角形中两锐角互余等知识点,熟练掌握各图形的性质是解决本题的关键