收藏 分享(赏)

2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx

上传人:a**** 文档编号:647459 上传时间:2025-12-12 格式:DOCX 页数:23 大小:401.06KB
下载 相关 举报
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第1页
第1页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第2页
第2页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第3页
第3页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第4页
第4页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第5页
第5页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第6页
第6页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第7页
第7页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第8页
第8页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第9页
第9页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第10页
第10页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第11页
第11页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第12页
第12页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第13页
第13页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第14页
第14页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第15页
第15页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第16页
第16页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第17页
第17页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第18页
第18页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第19页
第19页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第20页
第20页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第21页
第21页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第22页
第22页 / 共23页
2022-2023学年解析卷人教版九年级数学上册期末模拟考试题 卷(Ⅱ)(详解版).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的

2、其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()A7人B6人C5人D4人2、如图,五边形是O的内接正五边形,则的度数为()ABCD3、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交4、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a + 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个5、下列方程:;是一元二次方程的是()ABCD二、多选题(5小题,每小题

3、4分,共计20分)1、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可2、若为圆内接四边形,则下列哪个选项可能成立()ABCD3、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD4、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x21012tm22n已知则下列结论中,正确的是()AB和是方程的两个根CD(s取任意实数)5、对于实数a,b,定义

4、运算“”:,例如:42,因为,所以,若函数,则下列结论正确的是()A方程的解为,;B当时,y随x的增大而增大;C若关于x的方程有三个解,则;D当时,函数的最大值为1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是_2、若m,n是关于x的方程x2-3x-30的两根,则代数式m2+n2-2mn_3、已知抛物线与x轴的一个交点为,则代数式的值为_4、若代数式有意义,则x的取值范围是 _5、二次函数的部分图象如图所示,由图象可知,方程的解为_;不等式的解集为_四、解答题(5小题,每小题8分

5、,共计40分)1、如图,方格中,每个小正方形的边长都是单位1,ABC的位置如图(1)画出将ABC向右平移2个单位得到的A1B1C1;(2)画出将ABC绕点O顺时针方向旋转90得到的A2B2C2;(3)写出C2点的坐标 线 封 密 内 号学级年名姓 线 封 密 外 2、已知m是方程的一个根,试求的值.3、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:4、一个二次函数y=(k1)求k值5、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品

6、牌服装平均每天可售出20件现服装店决定采取适当的降价措施,扩大销售量,增加盈利经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000元,可能吗?请说明理由-参考答案-一、单选题1、B【解析】【分析】设小组有x人,根据题意,得x(x-1)=30,解方程即可【详解】设小组有x人,根据题意,得x(x-1)=30,整理,得,解方程,得(舍去),故选B【考点】本题考查了一元二次方程的应用,熟练掌握方程的应用是解题的关键2、D【解析】【分析】先根

7、据正五边形的内角和求出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键3、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错

8、误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.4、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两

9、个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键5、D【解析】【分析】根据一元二次方程的定义进行判断【详解】该方程符合一元二次方程的定义;该方程中含有2个未知数,不是一元二次方程;该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元

10、二次方程的定义综上,一元二次方程故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2二、多选题1、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2)故选BCD【考点】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变

11、换规律2、BD【解析】【分析】根据圆内接四边形的性质得出A+C=B+D=180,再逐个判断即可【详解】解:四边形ABCD是圆内接四边形,A+C=180,B+D=180,A+C=B+D,A,A+CB+D,故本选项不符合题意;B,A+C=B+D,故本选项符合题意;C,A+CB+D,故本选项不符合题意;D,A+C=B+D,故本选项符合题意;故选:BD【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补3、ABC【解析】【分析】根据根的判别式=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用【详解】解:A、=b2-4ac=02-414=-160

12、,此方程没有实数根,故本选项符合题意;B、=b2-4ac=(-4)2-414=0,此方程有两个相等的实数根,故本选项符合题意;C、=b2-4ac=12-413=-110,此方程没有实数根,故本选项符合题意;D、=b2-4ac=22-41(-1)=80, 线 封 密 内 号学级年名姓 线 封 密 外 此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC【考点】本题考查了一元二次方程根的判别式的知识此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根4、

13、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,结合二次函数图象性质,逐一分析各个选项,即可作出相应的判断【详解】解:由表格数据可知,当时,将点代入中,可得由表格数据可知,当时,;当时,;即抛物线对称轴为:,抛物线对称轴为:,化简得,抛物线解析式化为,将点代入中,化简得,解得,故A选项说法错误,不符合题意;二次函数对称轴为,和时,对应的函数值相等,时,对应函数值为,和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得, 线 封 密 内 号学级年名姓 线 封 密 外 故,

14、C选项说法正确,符合题意;,即,s取任意实数,故D选项说法错误,不符合题意;故选:BC【考点】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键5、ABD【解析】【分析】根据题干定义求出y(2x)(x+1)的解析式,根据2xx+1及2xx+1可得x1时y2x22x,x1时,yx2+1,进而求解【详解】解:根据题意得:当2xx+1,即x1时,y(2x)22x(x+1)2x22x,当2xx+1,即x1时,y(x+1)22x(x+1)x2+1,当x1时,2x22x0,解得x0(舍去)或x1,当x1时,x2+10,解得x1(舍去)或x1,

15、(2x)(x+1)0的解是x11,x21;故A正确,B、当x1时,y2x22x,抛物线开口向上,对称轴是直线x,x1时,y随x的增大而增大,B选项正确当x1时,y2x22x2(x)2,x1时,y取最小值为y0,当x1时,yx2+10,当x0时,y取最大值为y1,如图, 线 封 密 内 号学级年名姓 线 封 密 外 当0m1时,方程(2x)(x+1)m有三个解,选项C错误,选项D正确故答案为:ABD【考点】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系三、填空题1、【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐

16、标,最后求出平移后的函数关系式【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),解得:t=1或t=-1(舍去),平移后的顶点坐标为(1,3),移动后抛物线的解析式是故答案为:【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型2、21【解析】【分析】先根据根与系数的关系得到m+n3,mn3,再根据完全平方公式变形得到m2+n22mn(m+n)24mn,然后利用整体代入的方法计算【详解】解:m,n是关于x的方程x2-3x-30的两根,m+n3,mn3,m2+n22mn(m+n)24mn324(3)21故答案为:21【考点】本题考

17、查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x23、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022 线 封 密 内 号学级年名姓 线 封 密 外 =-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值4、3x且x【解析】【分析】根据二次根式的性质,被开方数大于等于0;分

18、母中有字母,分母不为0【详解】解:若代数式有意义,必有,解得解移项得两边平方得整理得解得解集为3x且x故答案为:3x且x【考点】本题考查了二次根式的概念:式子(a0)叫二次根式,(a0)是一个非负数注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于05、 , 或【解析】【分析】根据抛物线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案【详解】抛物线的对称轴为,抛物线与x轴一个交点为(5,0)抛物线与x轴另一个交点为(-1,0)方程的解为:,由图像可知,不等式的解集为:

19、或故答案为:,;或【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键四、解答题 线 封 密 内 号学级年名姓 线 封 密 外 1、(1)见解析;(2)见解析;(3)C2(2,3)【解析】【分析】(1)根据平移的方法将三点向右平移2个单位得到,然后将三个点连起来即可;(2)根据旋转的方法将三点绕点O顺时针方向旋转90得到,然后将三个点连起来即可;(3)根据(2)中描出的点C2的位置即可写出C2点的坐标【详解】解:(1)如图所示,A1B1C1即为所求,(2)如图所示,A2B2C2即为所求,(3)由(2)中点C2的位置可得,C2点的坐标为(2

20、,3)【考点】此题考查了平面直角坐标系中的平移和旋转变换作图以及求点的坐标,解题的关键是熟练掌握平移和旋转变换的方法2、2015【解析】【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算【详解】解:m是方程的一个根,代入即得.或.【考点】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单.3、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法

21、正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,

22、熟练掌握二次函数的性质是解题的关键4、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【考点】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件5、 (1)每件降价20元(2)不可能,理由见解析【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)根据题意列出方程,即每件服装的利润销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可(1)解:设每件服装降价x元由题意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,=(-30)2-4600=900-2400=-15000,则原方程无实数解则不可能每天盈利2000元【考点】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1