1、京改版八年级数学上册期中考试试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、使有意义的x的取值范围是()Ax3Bx3Cx3Dx32、下列分式,中,最简分式有()A1个B2个C3个D4个3、下列计算正确的
2、是()A2B2C2D24、下列说法:数轴上的任意一点都表示一个有理数;若、互为相反数,则;多项式是四次三项式;几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有()A个B个C个D个5、化简的结果是()AaBa+1Ca1Da21二、多选题(5小题,每小题4分,共计20分)1、下列各式从左到右的变形不正确的是()A =BCD2、以下各式不是最简二次根式的是()ABCD3、下列二次根式中,化简后能与合并的是()ABCD4、在下列分式中,不能再约分化简的分式有()ABCD5、在下列各数中,无理数为()A3.1415926BC0.2DEFG第卷(非选择题 65分)三、填空题(5小题,每小题5分
3、,共计25分)1、方程的解为_2、计算:(1)_;(2)_3、若2a+1和a7是数m的平方根,则m的值为_4、对于实数,定义运算若,则_5、若,则x与y关系是_四、解答题(5小题,每小题8分,共计40分)1、当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量某种型号的汽车的撞击影响可以用公式I2v2来表示,其中v(千米/分)表示汽车的速度假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一下该车撞击时的车速是多少(精确到0.1千米/分)2、先化简:再求值,其中是从1,2,3中选取的一个合适的数3、先化简,再求值:-,其中a=(3-)0+-.4、求下列各式中的x(1
4、)x257;(2)(x+1)36405、把下列各式填入相应的括号内:2a,整式集合:;分式集合:-参考答案-一、单选题1、C【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可【详解】解:式子有意义,x-30,解得x3故选C【考点】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键2、B【解析】【分析】根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简分式,故原式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解
5、此题的关键3、A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、,选项错误,不符合题意;故选:A【考点】本题考查了算术平方根的定义,解题的关键是注意区别算数平方根和平方根4、C【解析】【分析】数轴上的点可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,所以错误;根据有理数的乘法法则可判断正确【详解】数轴上的点既可以表示有理数,也可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,是三次三项式,故错误;
6、根据有理数的乘法法则可判断正确.故正确的有,共2个故选C【考点】本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键5、B【解析】【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分解,然后分子分母同时除以公因式(a-1)即可.【详解】解:原式= ,故本题答案为:B.【考点】分式的化简是本题的考点,运用平方差公式把分子进行因式分解找到分子分母的公因式是解题的关键.二、多选题1、BCD【解析】【分析】根据分式的基本性质,即可求解【详解】解:A、 的分子、分母同时乘以2,得到,故本选项正确,不符合题意;B、,故本选项错误,符合题意;C、,故本选项错误,符合题
7、意;D、,故本选项错误,符合题意;故选:BCD【考点】本题主要考查了分式的基本性质,熟练掌握分式的分子分母同时加上(或减去)同一个整式,分式的值不变;分式的分子分母同时乘以(或除以)同一个不等于0的整式,分式的值不变是解题的关键2、ABC【解析】【分析】根据最简二次根式的定义逐个判断即可【详解】解:A、,不是最简二次根式,故本选项符合题意;B、,不是最简二次根式,故本选项符合题意;C、,不是最简二次根式,故本选项符合题意;D、,是最简二次根式,故本选项不符合题意;故选ABC【考点】本题主要考查了最简二次根式的定义,最简二次根式的条件:(1)被开方数的因数是整数或整式;(2)被开方数中不含有可化
8、为平方数或平方式的因数或因式3、BD【解析】【分析】根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答【详解】解:A、,不能与合并,故本选项不符合题意;B、,能与合并,故本选项符合题意;C、,不能与合并,故本选项不符合题意;D、,能与合并,故本选项符合题意;故选:BD【考点】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式4、BC【解析】【分析】根据最简分式的定义:如果一个分式中没有可约的因式,则为最简分式,据此判断即可【详解】解:A、,不是最简分式,可以再约分,不合题意;B、,是最简分式,不能再约分,符合题意
9、;C、,是最简分式,不能再约分,符合题意;D、,不是最简分式,可以再约分,不合题意;故选:BC【考点】本题考查了最简分式的概念,熟记定义是解本题的关键5、DE【解析】【分析】根据无理数的概念:无限不循环小数,进行逐一判断即可得到答案【详解】解:A. 3.1415926是有限小数,是有理数,故不符合题意;B. 是有理数,故不符合题意;C. 0.2是小数,是有理数,故不符合题意D. 是无理数,故符合题意;E. 是无理数,故符合题意;F. 是分数,是有理数,故不符合题意;G. 是整数,是有理数,故不符合题意;故选DE【考点】本题主要考查了无理数的概念,解题的关键在于能够熟练掌握有理数,无理数的概念,
10、立方根和算术平方根的计算方法三、填空题1、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可【详解】解:故答案为:【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键2、 #0.5 【解析】【分析】(1)由负整数指数幂的运算法则计算即可(2)由零指数幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式3、
11、25或225【解析】【分析】由题意易知2a+1+a-7=0,然后求解a的值,进而问题可求解【详解】解:2a+1和a7是数m的平方根,2a+1+a-7=0或2a+1=a-7,解得:a=2或a=-8,或 m=225;故答案为25或225【考点】本题主要考查平方根及一元一次方程的解法,熟练掌握平方根及一元一次方程的解法是解题的关键4、【解析】【分析】根据给出的新定义分别求出与的值,根据得出关于a的一元一次方程,求解即可【详解】解:,解得,故答案为:【考点】本题考查解一元一次方程、新定义下实数的运算等内容,理解题干中给出的新定义是解题的关键5、x+y=0【解析】【分析】先移项,然后两边同时进行三次方运
12、算,继而可得答案.【详解】,()3=()3,x=-y,x+y=0,故答案为x+y=0.【考点】本题考查了立方根,明确是解题的关键.四、解答题1、5.0【解析】【分析】由I=2,这种型号的汽车在一次撞车实验中测得撞击影响为51,即可得,继而求得答案【详解】由题意知2v251,v2,所以v5.0(千米/分)该车撞击时的车速是5.0千米/分【考点】此题考查了算术平方根的应用注意理解题意是解此题的关键2、,-2【解析】【分析】先根据分式的运算法则把所给代数式化简,再从1,2,3中选取一个使分式有意义的数代入计算即可【详解】=,当x=2时,原式=故答案为:-2【考点】本题考查了分式的混合运算,熟练掌握分
13、式的运算法则是解答本题的关键分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式3、,;.【解析】【分析】根据分式的运算法则及混合运算顺序先把分式化为最简分式,再求得a的值,代入即可求解.【详解】解:原式=-=-=-=.a=(3-)0+-=1+3-1=3,原式=-.【考点】本题考查了分式的化简求值,把分式化为最简分式及正确求得a的值是解决问题的关键.4、(1),;(2)【解析】【分析】(1)移项整理后,利用平方根的性质开方求解,并化简即可;(2)移项整理后,利用立方根的性质开方求解即可【详解】解:(1),;(2),【考点】本题考查解利用平方根和立方根的性质解方程,掌握平方根与立方根的基本性质,熟练利用整体思想是解题关键5、整式集合: 2a,;分式集合: ,【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式【详解】2a,的分母没有字母是整式,式子的分母含有字母是分式故答案为:整式集合: 2a,;分式集合: ,【考点】本题考查了整式和分式的定义,熟练掌握相关概念是解题关键,注意:不是字母,是常数