1、京改版八年级数学上册期中考试练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在实数中,最小的是()ABC0D2、方程的解是()Ax2Bx1Cx1Dx33、设,且x、y、z为有理数则xyz()
2、ABCD4、已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A8.23106B8.23107C8.23106D8.231075、如图,在数轴上表示实数的点可能()A点PB点QC点MD点N二、多选题(5小题,每小题4分,共计20分)1、下列运算正确的是()A = 5B = 1C = 3D= 62、下列各式计算不正确的是()ABCD3、如果解关于x的分式方程时出现增根,则m的值可能为()ABCD14、下列运算不正确的是()ABCD5、下列分式变形不正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、对于任意
3、有理数a,b,定义新运算:ab=a22b+1,则2(6)=_2、若一个数的立方根等于这个数的算术平方根,则这个数是_3、若代数式在实数范围内有意义,则x的取值范围是_4、与最简二次根式5是同类二次根式,则a=_5、若分式有意义,则x的取值范围是 _四、解答题(5小题,每小题8分,共计40分)1、如果一个正数m的两个平方根分别是2a3和a9,求2m2的值2、现有一块长为、宽为的木板,能否在这块木板上截出两个面积是和的正方形木板?3、(1)因式分解:;(2)解方程:4、已知,求的值5、计算:+()2+|3|-参考答案-一、单选题1、D【解析】【分析】由正数比负数大可知比小,又因为,所以最小的是【详
4、解】,又故选:D【考点】本题考查了实数的大小比较,实数的比较中也遵循正数大于零,零大于负数的法则比较实数大小的方法较多,常见的有作差法、作商法、倒数法、数轴法、平方法、估算法2、D【解析】【分析】根据解分式方程的方法求解,即可得到答案【详解】 经检验,当时,与均不等于0方程的解是:x3故选:D【考点】本题考查了解分式方程的知识点;解题的关键是熟练掌握分式方程的解法,从而完成求解3、A【解析】【分析】将已知式子两侧平方后,根据x、y、z的对称性,列出对应等式,进而求出x、y、z的值即可求解【详解】解:两侧同时平方,得到,,xyz,故选择:A【考点】本题考查二次根式的加减法,x、y、z对称性,掌握
5、二次根式加减法法则,利用两边平方比较无理数构造方程是解题关键4、B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000823=8.2310-7故选B【考点】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、C【解析】【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题【详解】解:91516,34,对应的点是M故选:C【考点】本题考查实数与数
6、轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解二、多选题1、ACD【解析】【分析】分别根据二次根式的性质化简、二次根式的加减法则、二次根式的除法和乘法法则逐项判断即得答案【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项符合题意;D、,故本选项符合题意故选ACD【考点】本题考查了二次根式的运算和利用二次根式的性质化简,属于基础题型,熟练掌握二次根式的运算法则是解题的关键2、BCD【解析】【分析】解答此题根据二次根式的性质进行化简即可【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、 ,故此选项符合题意;D、,故此选项符合题意
7、;故选BCD【考点】本题主要考查了二次根式的化简,解答此题的关键是熟练掌握二次根式的基本运算法则3、AB【解析】【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到最简公分母为0,求出x的值,代入整式方程计算即可得到m的值【详解】解:,两边同乘以(x1)(x2)得:2(x2)mx1,由题意得:(x1)(x+2)0,得到x1或x2,将x1代入整式方程得:m6;将x2代入整式方程得:m3,则m的值为6或3故选:AB【考点】此题考查了分式方程的增根,解题的关键是掌握求分式方程的步骤.4、ABD【解析】【分析】根据二次根式的性质以及二次根式的运算法则化简和计算可得结果【详解】解:A、,运算不正
8、确,符合题意;B、,运算不正确,符合题意;C、,运算正确,不符合题意;D、,运算错误,符合题意;故选:ABD【考点】本题考查了二次根式的性质以及二次根式的运算,熟练运用运算法则是解本题的关键5、BCD【解析】【分析】根据分式的性质逐一进行判断即可;【详解】解:A、,原选项正确,故此选项不符合题意;B、当时,所以原选项错误,故此选项符合题意;C、,所以原选项错误,故此选项符合题意;D、,所以原选项错误,故此选项符合题意;故选:BCD【考点】本题考查了分式的基本性质解题的关键是掌握分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)
9、的倍数不能为0三、填空题1、17【解析】【分析】根据公式代入计算即可得到答案.【详解】ab=a22b+1,2(6)=222(6)+1=4+12+1=17.故答案为:17.【考点】此题考查新定义计算公式,正确理解公式并正确计算是解题的关键.2、0或1【解析】【分析】设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a【详解】解:设这个数为a,由题意知,=(a0),解得:a=1或0,故答案为:1或0【考点】本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a03、x3【解析】【分析】本题考查二次根式是否有意义以及分式是否有意义,按照对应自变量要求求解
10、即可【详解】因为二次根式有意义必须满足被开方数为非负数所以有又因为分式分母不为零所以故综上: 则:故答案为:x3【考点】二次根式以及分式的结合属于常见组合,需要着重注意分母不为零的隐藏陷阱4、2【解析】【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可【详解】解:与最简二次根式5是同类二次根式,且=2,a+1=3,解得:a=2故答案为2【考点】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式5、【解析】【分析】根据分式有意义的条件,即可求解【详解】解:根据题意得: ,解得: 故答案为:【考点】本题主要考查
11、了分式有意义的条件,熟练掌握当分式的分母不等于0时分式有意义是解题的关键四、解答题1、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根和平方的关系求出m,再求出2m-2的值【详解】解:一个正数的两个平方根分别是2a3和a9,(2a3)+(a9)=0,解得a= 4,这个正数为(2a3) 2=52=25,2m2=2252= 48;故答案为48.【考点】本题考查平方根.2、能截出两个面积是和的正方形木板.【解析】【分析】根据正方形的面积可以分别求得两个正方形的边长是和,显然只需比较两个正方形的边长的和与7.5的大小即可【详解】两个面积是和的正方形木板的边长是和,;,;答:
12、能够在这块木板上截出两个分别是8dm2和18dm2的正方形木板【考点】此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键3、(1);(2)x=4【解析】【分析】(1)先提取公因式,再利用完全平方公式进行分解因式,即可;(2)通过去分母,合并同类项移项,未知数系数化为1,检验,即可求解【详解】解:(1)原式=;(2),去分母得:,即:,解得:x=4,经检验:x=4是方程的解【考点】本题主要考查分解因式,解分式方程,掌握提取公因式和完全平方公式以及取去分母,是解题的关键4、2022【解析】【分析】根据算术平方根的非负性确定的范围,进而化简绝对值,在根据平方根的定义求得代数式的值【详解】解:,原式化简为,故【考点】本题考查了算术平方根的非负性,化简绝对值,平方根的定义,根据算术平方根的非负性确定的范围化简绝对值是解题的关键5、0【解析】【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可【详解】解:原式=+4+3-,=3+4+3-,=0【考点】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键