1、京改版八年级数学上册期中测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列算式正确的是()ABCD2、已知m=,则以下对m的估算正确的()A2m3B3m4C4m5D5m63、化简的结果是(
2、)AaBa+1Ca1Da214、将的分母化为整数,得()ABCD5、某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、在下列各数中,无理数为()A3.1415926BC0.2DEFG2、下列说法不正确的是()A无理数就是开方开不尽的数B无理数是无限不循环小数C带根号的数都是无理数D无限小数都是无理数3、下列二次根式中,最简二次根式是()ABCD4、下列说法不正确的是()A的立方根是0.4B的平方根是C16的立方根是D0.01的立方根是0.0000015、下列结论不
3、正确的是()A64的立方根是B没有立方根C立方根等于本身的数是0D= 第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知,则的值是_2、已知,则_,_3、如图所示的运算序中,若开始输入的a值为21,我们发现第一次输出的结果为24第二次输出的结果为12,则第2019次输出的结果为_4、若代数式有意义,则实数的取值范围是_5、一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用次;甲、丙两车合运相同次数,运完这批货物,甲车共运吨;乙、丙两车合运相同次数,运完这批货物乙车共运吨,现甲、乙、丙合运相同次数把这
4、批货物运完,货主应付甲车主的运费为_ 元.(按每吨运费元计算)四、解答题(5小题,每小题8分,共计40分)1、解分式方程:2、将下列数按要求分类,并将答案填入相应的括号内:,-0.25,206,0,21%,2.010010001正分数集合负有理数集合无理数集合3、如果解关于的方程会产生增根,求的值.4、先化简,再求值:(x1+),其中x为满足3x的整数解5、徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?-参考答案-一、
5、单选题1、D【解析】【分析】根据算术平方根的非负性,立方根的定义即可判断【详解】A、,故 A错误;B、,故B错误;C、,故C错误;D、,故D正确【考点】本题考查了算术平方根和立方根,掌握相关知识是解题的关键2、B【解析】【分析】直接化简二次根式,得出的取值范围,进而得出答案【详解】m=2+,12,3m4,故选B【考点】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键3、B【解析】【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分解,然后分子分母同时除以公因式(a-1)即可.【详解】解:原式= ,故本题答案为:B.【考点】分式的化简是本题的考点,运用平方差公式把
6、分子进行因式分解找到分子分母的公因式是解题的关键.4、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键5、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程二、多选题1、DE【解析】【分析】根据无理数的概念:无限不循环小
7、数,进行逐一判断即可得到答案【详解】解:A. 3.1415926是有限小数,是有理数,故不符合题意;B. 是有理数,故不符合题意;C. 0.2是小数,是有理数,故不符合题意D. 是无理数,故符合题意;E. 是无理数,故符合题意;F. 是分数,是有理数,故不符合题意;G. 是整数,是有理数,故不符合题意;故选DE【考点】本题主要考查了无理数的概念,解题的关键在于能够熟练掌握有理数,无理数的概念,立方根和算术平方根的计算方法2、ACD【解析】【分析】根据无理数的定义以及性质,对选项逐个判断即可【详解】解:A、无理数包含开方开不尽的数,选项说法错误,符合题意;B、无限不循环小数统称无理数,选项正确,
8、不符合题意;C、带根号的数都是无理数,说法错误,比如,为有理数,符合题意;D、无限不循环小数是无理数,无限循环小数是有理数,选项错误,符合题意;故选ACD【考点】此题考查了无理数的定义以及性质,无限不循环小数是无理数,熟练掌握无理数的有关性质是解题的关键3、CD【解析】【分析】根据最简二次根式的定义:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式,那么,这个根式叫做最简二次根式,据此判断即可【详解】解:A、,不是最简二次根式,不符合题意;B、不是最简二次根式,不符合题意;C、是最简二次根式,符合题意;D、是最简二次根式,符合题意;故选:CD【考点】本题考查了最简
9、二次根式,熟知最简二次根式的定义是解本题的关键4、ABD【解析】【分析】如果 那么是的立方根,根据立方根的含义逐一分析可得答案.【详解】解:的立方根是,故符合题意;没有平方根,故符合题意; 16的立方根是,故不符合题意;0.01的立方根是 故符合题意;故选:【考点】本题考查的是立方根的含义及求一个数的立方根,掌握立方根的含义是解题的关键.5、ABC【解析】【分析】根据立方根的定义解答即可【详解】解:A、64的立方根是4,原说法错误,故本选项符合题意;B、有立方根,是,原说法错误,故本选项符合题意;C、立方根等于它本身的数是0、1、-1,原说法错误,故本选项符合题意;D、,故选项D不符合题意,故
10、选ABC【考点】本题考查了立方根解题的关键是掌握立方根的定义的运用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根三、填空题1、【解析】【分析】由条件,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键2、 12 【解析】【分析】利用完全平方公式和平方差公式计算求值即可;【详解】解:由题意得:,故答案为:12,;【考点】本题考查了代数式求值,实数的混合运算,掌握乘法公式是解题关键3、6【解析】【分析】根据程序图进行计算发现数字的变化规律,从而分析
11、求解【详解】解:当输入a=21时,第一次输出的结果为,第二次输出结果为,第三次输出结果为,第四次输出结果为,第五次输出结果为,第六次输出结果为,自第三次开始,奇数次的输出结果为6,偶数次的输出结果为3,第2019次输出的结果是6故答案为:6【考点】本题考查代数式求值,准确识图,理解程序图,通过计算发现数字变化规律是解题关键4、【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可【详解】代数式有意义,分母不能为0,可得,即,故答案为:【考点】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键5、【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该
12、为,乙的效率应该为,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨”这两个等量关系来列方程【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,2at甲=T,at乙=T,t甲:t乙=1:2,由题意列方程:t乙=2t甲, 解得T=540.甲车运180吨,丙车运540180=360吨,丙车每次运货量也是甲车的2倍,甲车车主应得运费 (元),故答案为.【考点】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.四、解答题1、【解析】【分析】分式方程去分母转化为整式方程
13、,求出整式方程的解得到的值,经检验即可得到分式方程的解【详解】解:去分母得,解得,经检验,是原方程的解所以,原方程的解为:【考点】本题主要考查了分式方程的解法解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根2、见解析【解析】【分析】根据实数的分类,由分数,负有理数,无理数的定义可得答案【详解】解:正分数集合:,21%,;负有理数集合:-0.25,;无理数集合:,2.010010001,【考点】本题考查了有理数以及无理数,利用实数的分类是解题关键3、k=2【解析】【分析】首先根据分式方程的解法求出方程的解,然后根据增根求出k的值【详解】两边同时乘以(x2)
14、可得:x=2(x2)+k, 解得:x=4k,方程有增根,x=2, 即4k=2,解得:k=2【考点】本题主要考查的是分式方程有增根的情况,属于基础题型解决这种问题时,首先我们将k看作已知数,求出方程的解,然后根据解为增根得出答案4、,当x3时,原式【解析】【分析】根据分式的加减法和除法可以化简题目中的式子,然后从中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题【详解】解:,x+10,(x+2)(x2)0,x1,x2,3xx可以是3,当x=3时,原式【考点】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法5、A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【解析】【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,1.4t=3.5答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【考点】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.