1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测试试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫
2、冕冠军,充分展现了团队协作、顽强拼搏的女排精神如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为() A BCD2、已知x1,x2是一元二次方程2x23x5的两个实数根,下列结论错误的是()A23x15B(x1x2)(2x12x23)0Cx1x2Dx1x23、已知二次函数的图象经过点
3、,且,则下结论正确的是()ABCD4、已知二次函数yax2bxc,其中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc05、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD二、多选题(5小题,每小题4分,共计20分)1、若是方程的一个根,则的值是() 线 封 密 内 号学级年名姓 线 封 密 外 A1BC3D2、下列方程没有实数根的是()ABCD3、对于抛物线y2(x3)21,下列说法错误的是()A开口向上B对称轴是直线x3C当x3时,y随x的增大而减小D当x3时,函数值有最小值是14、在下列选项中,是方程的根的是()A6BC2D5、下列
4、方程中含有一次项的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知一元二次方程ax2+bx+c=0(a0),下列结论:若方程两根为-1和2,则2a+c=0;若ba+c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不相等的实数根;若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_2、若正方体的棱长为,表面积为,则与的关系式为_3、二次函数的最大值是_4、如果关于的一元二次方程的一个解是,那么代数式的值是_5、关于的方程,k=_时,方程有实数根四、解答题(5小题,每小题8分,共计40分)1、红星公司销售一种成
5、本为40元/件的产品,若月销售单价不高于50元/件一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件其中月销售单价不低于成本设月销售单价为x(单位:元/件),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元物价部门规定其销售单价不得高于每千克70元
6、,也不得低于30元市场调查发现:单价每千克70元时日均销售;单价每千克降低一元,日均多售在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算)(1)如果日均获利1950元,求销售单价;(2)销售单价为多少时,可获得最大利润?最大利润为多少3、已知抛物线yax2+3ax+c(a0)与y轴交于点A(1)若a0当a=1,c=1,求该抛物线与x轴交点坐标;点P(m,n)在二次函数抛物线yax2+3ax+c的图象上,且nc0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当2cxc时,抛物线与x轴只有一个公共
7、点,求a的取值范围.4、如图,在平面直角坐标系中,ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO 线 封 密 内 号学级年名姓 线 封 密 外 (1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当MAB为直角三角形时,直接写出m的值5、已知关于x的一元二次方程有两个实数根(1)求k的取值范围;(2)若,求k的值-参考答案-一、单选题1、A【解析】【分析】由题意可知点A坐标为(-5,0.5
8、),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,排球经过A、B、C三点,解得: ,排球运动路线的函数解析式为,故选:A【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键2、D【解析】【分析】根据一元二次方程的根的判别式、一元二次
9、方程根的定义、一元二次方程根与系数的关系逐一进行分析即可【详解】解:x1、x2是一元二次方程2x2-3x=5的两个实数根,故A正确,不符合题意;这里a=2,b=-3,c=-5, 线 封 密 内 号学级年名姓 线 封 密 外 ,故B、C正确,不符合题意,D错误,符合题意故选:D【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,是解题的关键3、D【解析】【分析】根据二次函数解析式,画出大致函数图象,结合条件画出A、B、C的大致位置,进而即可判断各个选项【详解】解:由二次函数y=a(x+)2+(a0)可知:函数图象是一个开口向上的抛物线,且对称轴为直线,y3y1y2,
10、点C离对称轴最远,点B离对称轴最近,|x1-x2|=|x2-x3|,x3x2x1,A、B、C的大致位置,如图所示,x2,x2,故选:D【考点】本题考查了二次函数的图象和性质,根据条件,画出函数的大致图象以及图象上的点的位置是解题的关键4、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0, 线 封 密 内 号学级年名姓 线 封 密 外 所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二
11、次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系5、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次
12、函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上二、多选题1、AD【解析】【分析】把代入方程中,得到关于的一元二
13、次方程,然后解方程即可【详解】解:把代入方程中,得:,解得:,所以的值为1或,故选AD【点睛】本题考查了一元二次方程的解,解题的关键是能得出关于的一元二次方程2、AD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】判断上述四个方程的根的情况,只要看根的判别式的值的符号就可以了【详解】解:、,方程没有实数根,故本选项符合题意;、,方程有两个不相等的实数根,故本选不符合题意;、,方程有两个相等的实数根,故本选项不符合题意;、,方程没有实数根,故本选项符合题意故选:AD【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程的根与有如下关系:(1)方程有两个不相等的实数根;(2)方
14、程有两个相等的实数根;(3)方程没有实数根3、CD【解析】【分析】根据抛物线的性质由得到图像开口向上,根据顶点式得到顶点坐标为,对称轴为直线,当时,随增大而增大【详解】解:由抛物线y2(x3)21得抛物线开口向上,故A正确,不符合题意;由抛物线顶点式可知顶点坐标为,对称轴为直线,故B正确,不符合题意;由抛物线对称轴以及开口方向可知,当时,随增大而增大,故C错误,符合题意;当当x3时,函数值有最小值是1,故D错误,符合题意;故答案为:CD【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握抛物线顶点式的性质4、AD【解析】【分析】分别将选项带入方程计算即可【详解】解:当时,成立,6是方程的根;
15、当时,不是方程的根;当时,2不是方程的根;当时,成立,是方程的根;故选:AD【点睛】本题考查了一元二次方程方程的根,使方程成立的未知数的取值是方程的根5、ABC【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项【详解】解:A、化为一元二次方程的一般形式为:3x2-2x-5=0,一次项为-2x;B、化为一元二次方程的一般形式为:9x2-16x=0,一次项为-16x;C、化为一元二次方程的一般形式为:x2-7
16、x=0;一次项为-7x;D、化为一元二次方程的一般形式为:x2-25=0,不含一次项故选:ABC【点睛】本题考查了一元二次方程的一般形式,注意:找项和项的系数时,带着前面的符号三、填空题1、故答案为:或【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键2【解析】【分析】利用根与系数的关系判断;由=b2-4ac判断;由判别式可判断;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断【详解】解:若方程两根为-1和2,则=-12=-2,即c=-2a,2a+c=2a-2a=0,故正确;由ba+c不能判断=b2-4ac值的大小情况,故错误;若b=2a
17、+3c,则=b2-4ac=4(a+c)2+5c20,一元二次方程ax2+bx+c=0有两个不相等的实数根,故正确若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a-(bm+c)+4abm+b2=4abm-4abm-4ac+b2=b2-4ac故正确;故答案为:【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系及根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2、【解析】【分析】正方体有6个面,每一个面都是边长为x的正
18、方形,这6个正方形的面积和就是该正方体的表面积【详解】解:正方体有6个面,每一个面都是边长为x的正方形,表面积故答案为:【考点】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键3、8 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】二次函数的顶点式在x=h时有最值,a0时有最小值,a0或m3(2)-9(3)或或【解析】【分析】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断并求出c的取值范围,从而求出c的最
19、小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2)解:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得:,的最小值为,(3)解:点A的坐标是(0,1),又当时,抛物线与x轴只有一个公共点,当时,当时,当时,解得:,或者,无解当时,无解,或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【点睛】此题主要考
20、查的是函数图象与x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围4、 (1);(2);(3)m的值为3或1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根据MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可 线 封 密 内 号学级
21、年名姓 线 封 密 外 (1)解:解方程得,线段OB,OC()的长是关于x的方程的两个根,OB1,OC6,CO2AO,OA3,设直线AC的解析式为,把点,代入得,解得,直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,直线AB的解析式为,PDx轴,垂足为D,PD与直线AB交于点Q,点P的横坐标为a,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,当时,当时,;(3)解:,当MAB=90时,解得,当ABM=90时,解得m=7, 线 封 密 内 号学级年名姓 线 封 密 外 当AMB=90时,解得,m的值为3或1或2或7【点睛】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键5、 (1) ;(2) 【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可【详解】解:(1)由题意可知,整理得:,解得:,的取值范围是:故答案为:(2)由题意得:,由韦达定理可知:,故有:,整理得:,解得:,又由(1)中可知,的值为故答案为:【点睛】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根