1、北师大版八年级数学上册第一章勾股定理章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD中,AB4,BC6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内的点F处,连接CF
2、,则CF的长为()ABCD2、如图,长方体的底面边长分别为2cm和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A11cmB2cmC(8+2)cmD(7+3)cm3、如图,在矩形ABCD中,将ABD沿对角线BD对折,得到EBD,DE与BC交于F,则()AB3CD64、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果AB=C,那么ABC是直角三角形B如果a2=b2c2,那么ABC是直角三角形,且C=90C如果ABC=132,那么ABC是直角三角形D如果a2b2c2=91625,那么ABC是直角三角形5、我国古代数学名
3、著算法统宗有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,5尺人高曾记,仕女家人争蹴良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为()ABCD6、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为()A4.5B4.6C4.8D57、九章算术中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺问折高者几何?意思是:一根竹子,原高一丈(一丈10尺),一阵风将竹子折断,
4、其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为尺,则可列方程为()ABCD8、已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A5B25CD5或9、如图,在ABC中,BAC=90,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为()A5B9C16D2510、已知点是平分线上的一点,且,作于点,点是射线上的一个动点,若,则的最小值为()A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、九章算术中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹
5、子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为_2、如图,分别以此直角三角形的三边为直径在三角形的外部画半圆,则_3、在平面直角坐标系中,点(3,2)到原点的距离是 _4、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米5、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_三、解答题(5小题,每小题10分,共计50分)1、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,于
6、A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?2、如图,某港口位于东西方向的海岸线上“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里它们离开港口一个半小时后分别位于点Q,R处,且相距30海里如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?3、细心观察图形,认真分析各式,然后解答问题OA22=,;OA32=12+,;OA42=12+,(1)请用含有n(n是正整数)的等式表示上述变规律:OAn2=_;Sn=_(2)求出OA10的长(3)若一个三角形的面积是,计算
7、说明他是第几个三角形?(4)求出S12+S22+S32+S102的值4、阅读下面材料:小明遇到这样一个问题:MBN30,点A为射线BM上一点,且AB4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD当ACBN时,求BD的长小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用EBC90,从而将问题解决(如图1)请回答:(1)在图1中,小明得到的全等三角形是 ;BD的长为 (2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求ABD周长最小值5、一个25米长的梯子,斜靠在一竖直的墙上,这时的距离
8、为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?-参考答案-一、单选题1、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BFAE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BFAEF是由ABE沿AE折叠得到的,BFAE,BE=EFBC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得B
9、F= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分2、B【解析】【详解】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果解:将长方体展开,连接AB,则AB最短.AA=3+2+3+2=10cm,AB=6 cm,AB=cm.故选B.3、A【解析】【分析】根据折叠的性质,可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值【详解】解:,AD=,由折叠可知,AB=BE=6,AD=ED=,BDF=DBFBF=D
10、F=-EF,在Rt中,由勾股定理得:,解得:EF=,故选:A【考点】本题主要考查的是勾股定理的应用,灵活利用折叠进行发掘条件是解题的关键4、B【解析】【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形定义即可【详解】解:A、A-B=C,ABC,ABC=180,A=90,ABC是直角三角形,此选项正确;B、如果a2=b2-c2,a2+c2=b2,ABC是直角三角形且B=90,此选项不正确;C、如果A:B:C=1:3:2,设A=x,则B=3x,C=2x,则x+3x+2x=180,解得:x=30,则3x=90,ABC是直角三角形,此选项正确;D、如果a2:b2:c2=9:16:25,则a2+
11、b2=c2,ABC是直角三角形,此选项正确;故选:B【考点】本题考查了三角形内角和,勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形5、C【解析】【分析】根据勾股定理列方程即可得出结论【详解】解:由题意知:OC=x-(5-1),PC=10,OP=x,在RtOCP中,由勾股定理得:x-(5-1)2+102=x2即故选:C【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键6、C【解析】【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边的高【详解】解:设斜边长为c,高为h由勾股定理可得: c2=62+82 ,则 c=10 ,直角三角形面积
12、S=68=ch ,可得 h=4.8 ,故选:C【考点】本题考查了勾股定理,利用勾股定理求直角三角形的边长和利用面积法求直角三角形的高是解决此类题的关键7、D【解析】【分析】先画出三角形,根据勾股定理和题目设好的未知数列出方程【详解】解:如图,根据题意,设折断处离地面的高度是x尺,即,根据勾股定理,即故选:D【考点】本题考查勾股定理的方程思想,解题的关键是根据题意利用勾股定理列出方程8、D【解析】【分析】分情况讨论:当边长为4的边作斜边时;当边长为4的边作直角边时,利用勾股定理分别求解即可【详解】解:当边长为4的边作斜边时,第三条边的长度为;当边长为4的边作直角边时,第三条边的长度为;综上分析可
13、知,这个三角形的第三条边的长为5或,故D正确故选:D【考点】本题主要考查了勾股定理,掌握分类讨论的思想是解题的关键9、D【解析】【分析】设,根据勾股定理可得,即可求解【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键10、B【解析】【分析】根据垂线段最短可得PNOA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可【详解】解:当PNOA时,PN的值最小,OC平分AOB,PMOB,PM=PN,由勾股定理可知:PM=3,PN的最小值为3故选B【考点】本题考查了角平分线上的点到角的两边的距
14、离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键二、填空题1、【解析】【分析】根据勾股定理即可得出结论【详解】解:设未折断的竹干长为尺,根据题意可列方程为:故答案为:【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用2、【解析】【分析】根据题意设直角三角形的三边为,分别表示出,得出,进而即可求解【详解】解:设直角三角形的三边为,如图, S118,S350,故答案为:【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键3、【解析】【分析】
15、根据两点的距离公式计算求解即可【详解】解:由题意知点(3,2)到原点的距离为故答案为:【考点】本题考查了用勾股定理求解两点的距离公式解题的关键在于熟练掌握距离公式:、两点间的距离公式为4、9【解析】【分析】在RtABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,BC17米,AC8米,AB15(米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领
16、会数形结合的思想的应用5、【解析】【分析】根据折叠的性质和勾股定理即可求得【详解】解:长方形纸片,根据折叠的性质可得,设,根据勾股定理,即,解得,故答案为:【考点】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键三、解答题1、E应建在距A点15km处【解析】【分析】设,则,根据勾股定理求得和,再根据列式计算即可;【详解】设,则,由勾股定理得:在中,在中,由题意可知:,所以:,解得:所以,E应建在距A点15km处【考点】本题主要考查了勾股定理的实际应用,准确计算是解题的关键2、北偏西45(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理
17、以及方向角即可得到“海天”号航行方向【详解】解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,182+242=302,RPQ是直角三角形,RPQ=90,“远航”号沿东北方向航行,即沿北偏东45方向航行,RPS=45,“海天”号沿北偏西45(或西北)方向航行【考点】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大3、(1)OAn2n;Sn;(2)OA10;(3)说明他是第20个三角形;(4)【解析】【分析】(1)利用已知可得OAn2,注意观察数据的变化,(2)结合(1)中规律即可求出OA102的值即可求出
18、,(3)若一个三角形的面积是,利用前面公式可以得到它是第几个三角形,(4)根据题意列出式子即可求出【详解】(1)结合已知数据,可得:OAn2n;Sn;(2)OAn2n,OA10;(3)若一个三角形的面积是,根据:Sn,2,说明他是第20个三角形,(4)S12+S22+S32+S102,故答案为(1)OAn2n;Sn;(2)OA10;(3)说明他是第20个三角形;(4)【考点】本题考查规律型:图形的变化类,勾股定理的应用.4、 (1)ABD,ACE,;(2)BD的长为;(3)4【解析】【分析】(1)根据SAS可证ABDACE,得出BDCE,利用勾股定理求出CE即可得出BD的长度;(2)作AHBC
19、于点H,以AB为边在左侧作等边ABE,连接CE,求出BH,HC即BC的长度,再利用勾股定理即可求出CE的长度,由(1)知BDCE,据此得解;(3)作AHBC于点H,以AB为边在左侧作等边ABE,延长EB至F,使BFEB,连接AF交BN于C,连接EC,此时BDAC有最小值即为AF,此时ABD周长AFAB最小,求出AF即可(1)解:ACD和ABE是等边三角形,EABDAC60,ADAC,EABBACDACBAC,即EACBAD,在ABD和AEC中,ABDACE(SAS),BDCE,AB4,MBN30,AC2,BC,BDCE,故答案为:ABD,ACE,;(2)解:如下图,作AHBC于点H,以AB为边
20、在左侧作等边ABE,连接CE,AB4,MAN30,AH2,BH,AC,HC ,BCBHHC,CE,由(1)可知BDCE,此时BD的长为;(3)解:如图,以AB为边在左侧作等边ABE,延长EB至F,使BFEB,连接AF交BN于C,连接EC, ECFCBD,此时BDAC有最小值即为AF,此时ABD周长ADBD+ABAFAB最小,作AGBE于G,AGBN,BAG30,BGAB2,AG,GFBGBF246,由勾股定理得AF,此时ABD周长为:4【考点】本题主要考查全等三角形的判定和性质,勾股定理等,作出合适的辅助线,构造出全等三角形是解题的关键5、8米【解析】【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB的长度,进而求出BB的长度即可【详解】解:如图,依题意可知AB25(米),AO24(米),O90, BO2AB2AO2252-242, BO7(米),移动后,20(米), (米), (米)答:梯子底端B外移8米【考点】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求的长度是解题的关键