1、八年级数学上册第十二章全等三角形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A2、如图,在ABC中,C=90,点D在A
2、C上,DEAB,若CDE=165,则B的度数为()A15B55C65D753、如图,在ABC中,ACB90,ACBC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE当ADBF时,BEF的度数是()A45B60C62.5D67.54、如图,在中,D是上一点,于点E,连接,若,则等于()ABCD5、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE6、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是
3、拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么OABOCD理由是()A边角边B角边角C边边边D角角边7、已知,如图,在ABC中,D为BC边上的一点,延长AD到点E,连接BE、CE,ABD+3=90,1=2=3,下列结论:ABD为等腰三角形;AE=AC;BE=CE=CD;CB平分ACE其中正确的结论个数有()A1个B2个C3个D4个8、如图,若,则下列结论中不一定成立的是()ABCD9、如图,ABC和EDF中,BD90,AE,点B,F,C,D在同一条直线上,再增加一个条件,不能判定ABCEDF的是()AABEDB
4、ACEFCACEFDBFDC10、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D50第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=_2、如图,是一个中心对称图形,A为对称中心,若,则_,_3、如图,在x、y轴上分别截取OA、OB,使OAOB,再分别以点A、B为圆心,以大于AB的长度为半径画弧,两弧交于点C若C的坐标为(3a,a8),则a_4、如图,点B,E,C,F在一条直线上,ABDF,ABDF,若ABCDFE,则需添加的条件是_(填一个即可)5、如图,BEAC,垂足为D,且A
5、DCD,BDED若ABC54,则E_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点在边上,使,过点作,分别交于点,交的延长线于点求证:2、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM(1)若AE=5,求BF的长;(2)若AEC=90,DBF=CAE,求证:CD=FE3、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MACE,ANBD,AM=AN求证:EM=DN4、如图,已知,求证:5、如图,已知在中,求证:-参考答案-一、单选题1、A【解析】【分析】根据全等三
6、角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型2、D【解析】【分析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15,DEAB,A=ADE=15,B=180CA=1809015=75,故选D【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键3、D【解析】【分析】根据旋转的性质可得CDCE和DCE90,结合ACB90,ACBC,可证ACDBCE,依
7、据全等三角形的性质即可得到CBEA45,再由ADBF可得等腰BEF,则可计算出BEF的度数【详解】解:由旋转性质可得: CDCE,DCE90ACB90,ACBC,A45ACBDCBDCEDCB即ACDBCEACDBCECBEA45ADBF,BEBFBEFBFE 67.5故选:D【考点】本题考查了旋转的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是熟练运用旋转的性质找出相等的线段和角,并能准确判定三角形全等,从而利用全等三角形性质解决相应的问题4、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选
8、:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键5、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF,BCEF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点6、A【解析】【详解】解:根据SAS得:OABODC故选A.7、C【解析】【分析】作AF平分BAD可根据证ABF
9、ADF,推出AB=AD,得出ABD为等腰三角形;可根据同弦所对的圆周角相等知点A、B、C、E共圆,可判出BE=CE=CD,根据三角形内角和等于180,可判出AE=AC;求出7=902,根据1=4=2推出47,即可得出BC不是ACE的平分线【详解】解:作AF平分BAD,BAD=3,ABD+3=90,BAF=3=DAF,ABF+BAF=90AFB=AFD=90,在BAF和DAF中ABFADF(ASA),AB=AD,故正确;AEAC,64790,5ADBABD90,12,5690CECD,4180561802(90)1,13,43,BECE,BECECD,正确;6+2+ACE=180,6=5=ADB
10、=ABD=902ACE=18062=902,ACE=6,AE=CE,故正确5=2+7=902,7=902,BAD=4=2,47,故错误;故选C【考点】本题主要考查了全等三角形的判定和性质、同弦所对的圆周角相等、三角形内角和的相关知识,灵活运用所学知识是解题的关键8、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性
11、质,解题的关键是三角形全等的性质9、C【解析】【分析】根据全等三角形的判定方法即可判断.【详解】A. ABED,可用ASA判定ABCEDF;B. ACEF,可用AAS判定ABCEDF;C. ACEF,不能用AAA判定ABCEDF,故错误;D. BFDC,可用AAS判定ABCEDF;故选C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.10、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟
12、练掌握全等三角形的性质是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边二、填空题1、6【解析】【分析】由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可【详解】解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=40.5+41=6故答案为:6【考点】考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边2、 30 2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可【详解】解:A为对称中心,绕点A旋转能与重合,【考点】本题考查中心对称
13、图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键3、2【解析】【分析】根据尺规作图可知,点C在AOB角平分线上,所以C点的横坐标和纵坐标相等,即可以求出a的值【详解】解:根据题目尺规作图可知,交点C是AOB角平分线上的一点,点C在第一象限,点C的横坐标和纵坐标都是正数且横坐标等于纵坐标,即3a=-a+8,得a=2,故答案为:2【考点】本题考查了角平分线尺规作图,角平分线的性质,以及平面直角坐标系的知识,结合直角坐标系的知识列方程求解是解答本题的关键4、AD 或ACBDEF或ACDE或BCFE或BEFC【解析】【分析】先根据已知条件推得BF,加上ABDF,要证ABCDFE,
14、只需要根据全等三角形的判定方法添加适当的角和边即可【详解】解:ABDF,添加AD,在和中 ,;添加ACBDEF,在和中 ,;添加ACDE,ACDE,ACBDEF,在和中 ,;添加BCFE,在和中 ,;添加BEFC,BEFC,在和中 ,综上可得,添加AD 或ACBDEF或ACDE或BCFE或BEFC都可得到ABCDFE故答案为:AD 或ACBDEF或ACDE或BCFE或BEFC【考点】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角5、27【解析】【详解】BEAC,AD=CD,AB=CB,即ABC为等腰三角形,BD平分ABC,即ABE
15、=CBE=ABC=27,在ABD和CED中, ,ABDCED(SAS),E=ABE=27故答案是:27三、解答题1、详见解析【解析】【分析】根据得出,再根据,故,证明即可证明.【详解】,在和中,(AAS),【考点】本题考查了直角三角形两锐角互余以及三角形全等的判定和性质,熟练掌握直角三角形两锐角互余以及三角形全等的判定和性质是解题的关键.2、(1)BF=5;(2)见解析【解析】【分析】(1)证明AEMBFM即可;(2)证明AECBFD,得到EC=FD,利用等式性质,得到CD=FE【详解】(1)BFAE,MFB=MEA,MBF=MAE,EM=FM,AEMBFM,AE=BF,AE=5,BF=5;(
16、2)BFAE,MFB=MEA,AEC=90,MFB=90,BFD=90,BFD=AEC,DBF=CAE,AE=BF,AECBFD,EC=FD,EF+FC=FC+CD,CD=FE【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键3、见解析.【解析】【分析】首先由已知证明RtBANRtCAM,得到ABN=ACM,BN=CM,再根据ASA证明ABDACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM中,所以RtBANRtCAM(HL),ABN=ACM,BN=CM,在ABD和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN.【考点】本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.4、见详解【解析】【分析】根据SSS定理推出ADBBCA即可证明【详解】证明:在ADB和BCA中, ADBBCA(SSS),【考点】本题考查了全等三角形的性质和判定,能正确进行推理证明全等是解此题的关键5、见解析【解析】【分析】证明,为三角形的全等提供条件即可【详解】证明:,在和中,(ASA) 【考点】本题考查了ASA证明三角形的全等,抓住题目的特点,补充全等需要的条件是解题的关键