收藏 分享(赏)

2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx

上传人:a**** 文档编号:625944 上传时间:2025-12-12 格式:DOCX 页数:8 大小:80.05KB
下载 相关 举报
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第1页
第1页 / 共8页
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第2页
第2页 / 共8页
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第3页
第3页 / 共8页
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第4页
第4页 / 共8页
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第5页
第5页 / 共8页
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第6页
第6页 / 共8页
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第7页
第7页 / 共8页
2021版高考数学(文)导学大一轮人教A广西专用考点规范练45 椭圆 WORD版含解析.docx_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、考点规范练45椭圆考点规范练A册第34页基础巩固1.已知椭圆的焦点坐标为(-5,0)和(5,0),椭圆上一点与两焦点的距离和是26,则椭圆的方程为()A.x2169+y2144=1B.x2144+y2169=1C.x2169+y225=1D.x2144+y225=1答案:A解析:由题意知a=13,c=5,则b2=a2-c2=144.又椭圆的焦点在x轴上,椭圆方程为x2169+y2144=1.2.已知椭圆x29+y24+k=1的离心率为45,则k的值为()A.-1925B.21C.-1925或21D.1925或21答案:C解析:若a2=9,b2=4+k,则c=5-k,由ca=45,即5-k3=4

2、5,得k=-1925;若a2=4+k,b2=9,则c=k-5,由ca=45,即k-54+k=45,解得k=21.3.(2019河南洛阳期中)“-3m0,m+30,5-mm+3,解得-3m5且m1,因此,“-3mb0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A.63B.33C.23D.13答案:A解析:以线段A1A2为直径的圆的方程是x2+y2=a2.因为直线bx-ay+2ab=0与圆x2+y2=a2相切,所以圆心到该直线的距离d=2abb2+a2=a,整理,得a2=3b2,即a2=3(a2-c2),所以c2a2=23,从而e=

3、ca=63.故选A.6.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13B.12C.23D.34答案:B解析:设椭圆的一个顶点坐标为(0,b),一个焦点坐标为(c,0),则直线l的方程为xc+yb=1,即bx+cy-bc=0,短轴长为2b,由题意得bcb2+c2=142b,与b2+c2=a2联立得a=2c,故e=12.7.(2019浙江,15)已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是.答案:15解析:如图,设PF的中点为M,椭圆的右焦点为

4、F1.由题意可知|OF|=|OM|=c=2,由中位线定理可得|PF1|=2|OM|=4,设P(x,y)可得(x-2)2+y2=16,与椭圆方程x29+y25=1联立,解得x=-32,x=212(舍),因为点P在椭圆上且在x轴的上方,所以P-32,152,所以kPF=15212=15.8.(2019天津,文19)设椭圆x2a2+y2b2=1(ab0)的左焦点为F,左顶点为A,上顶点为B,已知3|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线x=4上,且OCAP.求椭圆的方程.解:(1)

5、设椭圆的半焦距为c,由已知有3a=2b,又由a2=b2+c2,消去b得a2=32a2+c2,解得ca=12.所以,椭圆的离心率为12.(2)由(1)知,a=2c,b=3c,故椭圆方程为x24c2+y23c2=1,由题意,F(-c,0),则直线l的方程为y=34(x+c).点P的坐标满足x24c2+y23c2=1,y=34(x+c),消去y并化简,得到7x2+6cx-13c2=0,解得x1=c,x2=-13c7.代入到l的方程,解得y1=32c,y2=-914c.因为点P在x轴上方,所以Pc,32c.由圆心C在直线x=4上,可设C(4,t).因为OCAP,且由(1)知A(-2c,0),故t4=3

6、2cc+2c,解得t=2.因为圆C与x轴相切,所以圆的半径长为2,又由圆C与l相切,得34(4+c)-21+(34)2=2,可得c=2.所以,椭圆的方程为x216+y212=1.9.已知椭圆M:x2a2+y2b2=1(ab0)的离心率为63,焦距为22,斜率为k的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值;(3)设P(-2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若C,D和点Q-74,14共线,求k.解:(1)由题意得a2=b2+c2,ca=63,2c=22,解得a=3,b=1.所以椭圆M的方程为x23+y2

7、=1.(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2).由y=x+m,x23+y2=1,得4x2+6mx+3m2-3=0,所以x1+x2=-3m2,x1x2=3m2-34.所以|AB|=(x2-x1)2+(y2-y1)2=2(x2-x1)2=2(x1+x2)2-4x1x2=12-3m22.当m=0,即直线l过原点时,|AB|最大,最大值为6.(3)设A(x1,y1),B(x2,y2),由题意得x12+3y12=3,x22+3y22=3.直线PA的方程为y=y1x1+2(x+2).由y=y1x1+2(x+2),x2+3y2=3,得(x1+2)2+3y12x2+12y12x+1

8、2y12-3(x1+2)2=0.设C(xC,yC),所以xC+x1=-12y12(x1+2)2+3y12=4x12-124x1+7.所以xC=4x12-124x1+7-x1=-12-7x14x1+7.所以yC=y1x1+2(xC+2)=y14x1+7.设D(xD,yD),同理得xD=-12-7x24x2+7,yD=y24x2+7.记直线CQ,DQ的斜率分别为kCQ,kDQ,则kCQ-kDQ=y14x1+7-14-12-7x14x1+7+74-y24x2+7-14-12-7x24x2+7+74=4(y1-y2-x1+x2).因为C,D,Q三点共线,所以kCQ-kDQ=0.故y1-y2=x1-x2

9、.所以直线l的斜率k=y1-y2x1-x2=1.能力提升10.已知F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右两个焦点,若椭圆上存在点P使得PF1PF2,则该椭圆的离心率的取值范围是()A.55,1B.22,1C.0,55D.0,22答案:B解析:F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右两个焦点,离心率0e1,F1(-c,0),F2(c,0),c2=a2-b2.设点P(x,y),由PF1PF2,得(x-c,y)(x+c,y)=0,化简得x2+y2=c2,联立方程组x2+y2=c2,x2a2+y2b2=1,整理,得x2=(2c2-a2)a2c20,解得e22,又0e1

10、,22eb0)的左、右焦点分别为F1,F2,过F2作垂直于x轴的直线l与椭圆E在第一象限交于点P,若|PF1|=5,且3a=b2.(1)求椭圆E的方程;(2)A,B是椭圆C上位于直线l两侧的两点.若直线AB过点(1,-1),且APF2=BPF2,求直线AB的方程.解:(1)由题意可得|PF2|=b2a=3,因为|PF1|=5,由椭圆的定义得a=4,所以b2=12,故椭圆E方程为x216+y212=1.(2)易知点P的坐标为(2,3).因为APF2=BPF2,所以直线PA,PB的斜率之和为0.设直线PA的斜率为k,则直线PB的斜率为-k,设A(x1,y1),B(x2,y2),则直线PA的方程为y-3=k(x-2),由y-3=k(x-2),x216+y212=1可得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0,所以x1+2=8k(2k-3)3+4k2,同理直线PB的方程为y-3=-k(x-2),可得x2+2=-8k(-2k-3)3+4k2=8k(2k+3)3+4k2,所以x1+x2=16k2-123+4k2,x1-x2=-48k3+4k2,kAB=y1-y2x1-x2=k(x1-2)+3+k(x2-2)-3x1-x2=k(x1+x2)-4kx1-x2=12,所以满足条件的直线AB的方程为y+1=12(x-1),即为x-2y-3=0.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1